Depth Priors in Removal Neural Radiance Fields
- URL: http://arxiv.org/abs/2405.00630v3
- Date: Wed, 3 Jul 2024 15:23:00 GMT
- Title: Depth Priors in Removal Neural Radiance Fields
- Authors: Zhihao Guo, Peng Wang,
- Abstract summary: This paper proposes a new pipeline that leverages SpinNeRF and monocular depth estimation models like ZoeDepth to enhance NeRF's performance in object removal.
A thorough evaluation of COLMAP's dense depth reconstruction on the KITTI dataset is conducted to demonstrate that COLMAP can be viewed as a cost-effective and scalable alternative for acquiring depth ground truth.
- Score: 3.935427742243637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Radiance Fields (NeRF) have achieved impressive results in 3D reconstruction and novel view generation. A significant challenge within NeRF involves editing reconstructed 3D scenes, such as object removal, which demands consistency across multiple views and the synthesis of high-quality perspectives. Previous studies have integrated depth priors, typically sourced from LiDAR or sparse depth estimates from COLMAP, to enhance NeRF's performance in object removal. However, these methods are either expensive or time-consuming. This paper proposes a new pipeline that leverages SpinNeRF and monocular depth estimation models like ZoeDepth to enhance NeRF's performance in complex object removal with improved efficiency. A thorough evaluation of COLMAP's dense depth reconstruction on the KITTI dataset is conducted to demonstrate that COLMAP can be viewed as a cost-effective and scalable alternative for acquiring depth ground truth compared to traditional methods like LiDAR. This serves as the basis for evaluating the performance of monocular depth estimation models to determine the best one for generating depth priors for SpinNeRF. The new pipeline is tested in various scenarios involving 3D reconstruction and object removal, and the results indicate that our pipeline significantly reduces the time required for the acquisition of depth priors for object removal and enhances the fidelity of the synthesized views, suggesting substantial potential for building high-fidelity digital twin systems with increased efficiency in the future.
Related papers
- Uncertainty-guided Optimal Transport in Depth Supervised Sparse-View 3D Gaussian [49.21866794516328]
3D Gaussian splatting has demonstrated impressive performance in real-time novel view synthesis.
Previous approaches have incorporated depth supervision into the training of 3D Gaussians to mitigate overfitting.
We introduce a novel method to supervise the depth distribution of 3D Gaussians, utilizing depth priors with integrated uncertainty estimates.
arXiv Detail & Related papers (2024-05-30T03:18:30Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - Incremental Dense Reconstruction from Monocular Video with Guided Sparse
Feature Volume Fusion [23.984073189849024]
This letter proposes a real-time feature volume-based dense reconstruction method that predicts TSDF values from a novel sparsified deep feature volume.
An uncertainty-aware multi-view stereo network is leveraged to infer initial voxel locations of the physical surface in a sparse feature volume.
Our method is shown to produce more complete reconstructions with finer detail in many cases.
arXiv Detail & Related papers (2023-05-24T09:06:01Z) - HiMODE: A Hybrid Monocular Omnidirectional Depth Estimation Model [3.5290359800552946]
HiMODE is a novel monocular omnidirectional depth estimation model based on a CNN+Transformer architecture.
We show that HiMODE can achieve state-of-the-art performance for 360deg monocular depth estimation.
arXiv Detail & Related papers (2022-04-11T11:11:43Z) - Unsupervised Single-shot Depth Estimation using Perceptual
Reconstruction [0.0]
This study presents the most recent advances in the field of generative neural networks, leveraging them to perform fully unsupervised single-shot depth synthesis.
Two generators for RGB-to-depth and depth-to-RGB transfer are implemented and simultaneously optimized using the Wasserstein-1 distance and a novel perceptual reconstruction term.
The success observed in this study suggests the great potential for unsupervised single-shot depth estimation in real-world applications.
arXiv Detail & Related papers (2022-01-28T15:11:34Z) - Sparse Depth Completion with Semantic Mesh Deformation Optimization [4.03103540543081]
We propose a neural network with post-optimization, which takes an RGB image and sparse depth samples as input and predicts the complete depth map.
Our evaluation results outperform the existing work consistently on both indoor and outdoor datasets.
arXiv Detail & Related papers (2021-12-10T13:01:06Z) - NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor
Multi-view Stereo [97.07453889070574]
We present a new multi-view depth estimation method that utilizes both conventional SfM reconstruction and learning-based priors.
We show that our proposed framework significantly outperforms state-of-the-art methods on indoor scenes.
arXiv Detail & Related papers (2021-09-02T17:54:31Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
Reconstructing high-fidelity 3D objects from sparse, partial observation is crucial for various applications in computer vision, robotics, and graphics.
Recent neural implicit modeling methods show promising results on synthetic or dense datasets.
But, they perform poorly on real-world data that is sparse and noisy.
This paper analyzes the root cause of such deficient performance of a popular neural implicit model.
arXiv Detail & Related papers (2021-01-18T03:24:48Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
We present a novel method for multi-view depth estimation from a single video.
Our method achieves temporally coherent depth estimation results by using a novel Epipolar Spatio-Temporal (EST) transformer.
To reduce the computational cost, inspired by recent Mixture-of-Experts models, we design a compact hybrid network.
arXiv Detail & Related papers (2020-11-26T04:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.