ConstrainedZero: Chance-Constrained POMDP Planning using Learned Probabilistic Failure Surrogates and Adaptive Safety Constraints
- URL: http://arxiv.org/abs/2405.00644v1
- Date: Wed, 1 May 2024 17:17:22 GMT
- Title: ConstrainedZero: Chance-Constrained POMDP Planning using Learned Probabilistic Failure Surrogates and Adaptive Safety Constraints
- Authors: Robert J. Moss, Arec Jamgochian, Johannes Fischer, Anthony Corso, Mykel J. Kochenderfer,
- Abstract summary: This work introduces the ConstrainedZero policy algorithm that solves CC-POMDPs in belief space by learning neural network approximations of the optimal value and policy.
Results show that by separating safety constraints from the objective we can achieve a target level of safety without optimizing the balance between rewards and costs.
- Score: 34.9739641898452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To plan safely in uncertain environments, agents must balance utility with safety constraints. Safe planning problems can be modeled as a chance-constrained partially observable Markov decision process (CC-POMDP) and solutions often use expensive rollouts or heuristics to estimate the optimal value and action-selection policy. This work introduces the ConstrainedZero policy iteration algorithm that solves CC-POMDPs in belief space by learning neural network approximations of the optimal value and policy with an additional network head that estimates the failure probability given a belief. This failure probability guides safe action selection during online Monte Carlo tree search (MCTS). To avoid overemphasizing search based on the failure estimates, we introduce $\Delta$-MCTS, which uses adaptive conformal inference to update the failure threshold during planning. The approach is tested on a safety-critical POMDP benchmark, an aircraft collision avoidance system, and the sustainability problem of safe CO$_2$ storage. Results show that by separating safety constraints from the objective we can achieve a target level of safety without optimizing the balance between rewards and costs.
Related papers
- Flipping-based Policy for Chance-Constrained Markov Decision Processes [9.404184937255694]
This paper proposes a textitflipping-based policy for Chance-Constrained Markov Decision Processes ( CCMDPs)
The flipping-based policy selects the next action by tossing a potentially distorted coin between two action candidates.
We demonstrate that the flipping-based policy can improve the performance of the existing safe RL algorithms under the same limits of safety constraints.
arXiv Detail & Related papers (2024-10-09T02:00:39Z) - Learning Predictive Safety Filter via Decomposition of Robust Invariant
Set [6.94348936509225]
This paper presents advantages of both RMPC and RL RL to synthesize safety filters for nonlinear systems.
We propose a policy approach for robust reach problems and establish its complexity.
arXiv Detail & Related papers (2023-11-12T08:11:28Z) - SCPO: Safe Reinforcement Learning with Safety Critic Policy Optimization [1.3597551064547502]
This study introduces a novel safe reinforcement learning algorithm, Safety Critic Policy Optimization.
In this study, we define the safety critic, a mechanism that nullifies rewards obtained through violating safety constraints.
Our theoretical analysis indicates that the proposed algorithm can automatically balance the trade-off between adhering to safety constraints and maximizing rewards.
arXiv Detail & Related papers (2023-11-01T22:12:50Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Meta-Learning Priors for Safe Bayesian Optimization [72.8349503901712]
We build on a meta-learning algorithm, F-PACOH, capable of providing reliable uncertainty quantification in settings of data scarcity.
As core contribution, we develop a novel framework for choosing safety-compliant priors in a data-riven manner.
On benchmark functions and a high-precision motion system, we demonstrate that our meta-learned priors accelerate the convergence of safe BO approaches.
arXiv Detail & Related papers (2022-10-03T08:38:38Z) - Enforcing Hard Constraints with Soft Barriers: Safe Reinforcement
Learning in Unknown Stochastic Environments [84.3830478851369]
We propose a safe reinforcement learning approach that can jointly learn the environment and optimize the control policy.
Our approach can effectively enforce hard safety constraints and significantly outperform CMDP-based baseline methods in system safe rate measured via simulations.
arXiv Detail & Related papers (2022-09-29T20:49:25Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Lyapunov-based uncertainty-aware safe reinforcement learning [0.0]
InReinforcement learning (RL) has shown a promising performance in learning optimal policies for a variety of sequential decision-making tasks.
In many real-world RL problems, besides optimizing the main objectives, the agent is expected to satisfy a certain level of safety.
We propose a Lyapunov-based uncertainty-aware safe RL model to address these limitations.
arXiv Detail & Related papers (2021-07-29T13:08:15Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.