Flipping-based Policy for Chance-Constrained Markov Decision Processes
- URL: http://arxiv.org/abs/2410.06474v1
- Date: Wed, 9 Oct 2024 02:00:39 GMT
- Title: Flipping-based Policy for Chance-Constrained Markov Decision Processes
- Authors: Xun Shen, Shuo Jiang, Akifumi Wachi, Kaumune Hashimoto, Sebastien Gros,
- Abstract summary: This paper proposes a textitflipping-based policy for Chance-Constrained Markov Decision Processes ( CCMDPs)
The flipping-based policy selects the next action by tossing a potentially distorted coin between two action candidates.
We demonstrate that the flipping-based policy can improve the performance of the existing safe RL algorithms under the same limits of safety constraints.
- Score: 9.404184937255694
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Safe reinforcement learning (RL) is a promising approach for many real-world decision-making problems where ensuring safety is a critical necessity. In safe RL research, while expected cumulative safety constraints (ECSCs) are typically the first choices, chance constraints are often more pragmatic for incorporating safety under uncertainties. This paper proposes a \textit{flipping-based policy} for Chance-Constrained Markov Decision Processes (CCMDPs). The flipping-based policy selects the next action by tossing a potentially distorted coin between two action candidates. The probability of the flip and the two action candidates vary depending on the state. We establish a Bellman equation for CCMDPs and further prove the existence of a flipping-based policy within the optimal solution sets. Since solving the problem with joint chance constraints is challenging in practice, we then prove that joint chance constraints can be approximated into Expected Cumulative Safety Constraints (ECSCs) and that there exists a flipping-based policy in the optimal solution sets for constrained MDPs with ECSCs. As a specific instance of practical implementations, we present a framework for adapting constrained policy optimization to train a flipping-based policy. This framework can be applied to other safe RL algorithms. We demonstrate that the flipping-based policy can improve the performance of the existing safe RL algorithms under the same limits of safety constraints on Safety Gym benchmarks.
Related papers
- Embedding Safety into RL: A New Take on Trust Region Methods [1.5733417396701983]
Reinforcement Learning (RL) agents are able to solve a wide variety of tasks but are prone to unsafe behaviors.
We propose Constrained Trust Region Policy Optimization (C-TRPO), a novel approach that modifies the geometry of the policy space based on the safety constraints.
arXiv Detail & Related papers (2024-11-05T09:55:50Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - ConstrainedZero: Chance-Constrained POMDP Planning using Learned Probabilistic Failure Surrogates and Adaptive Safety Constraints [34.9739641898452]
This work introduces the ConstrainedZero policy algorithm that solves CC-POMDPs in belief space by learning neural network approximations of the optimal value and policy.
Results show that by separating safety constraints from the objective we can achieve a target level of safety without optimizing the balance between rewards and costs.
arXiv Detail & Related papers (2024-05-01T17:17:22Z) - Policy Bifurcation in Safe Reinforcement Learning [35.75059015441807]
In some scenarios, the feasible policy should be discontinuous or multi-valued, interpolating between discontinuous local optima can inevitably lead to constraint violations.
We are the first to identify the generating mechanism of such a phenomenon, and employ topological analysis to rigorously prove the existence of bifurcation in safe RL.
We propose a safe RL algorithm called multimodal policy optimization (MUPO), which utilizes a Gaussian mixture distribution as the policy output.
arXiv Detail & Related papers (2024-03-19T15:54:38Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
The widely adopted CMDP model constrains the risks in expectation, which makes room for dangerous behaviors in long-tail states.
In safety-critical domains, such behaviors could lead to disastrous outcomes.
We propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic.
arXiv Detail & Related papers (2024-02-23T23:22:06Z) - SCPO: Safe Reinforcement Learning with Safety Critic Policy Optimization [1.3597551064547502]
This study introduces a novel safe reinforcement learning algorithm, Safety Critic Policy Optimization.
In this study, we define the safety critic, a mechanism that nullifies rewards obtained through violating safety constraints.
Our theoretical analysis indicates that the proposed algorithm can automatically balance the trade-off between adhering to safety constraints and maximizing rewards.
arXiv Detail & Related papers (2023-11-01T22:12:50Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
We show that the trust region constraint over policies can be safely substituted by a trust-region-free constraint without compromising the underlying monotonic improvement guarantee.
We call the resulting algorithm Trust-REgion-Free Policy Optimization (TREFree) explicit as it is free of any trust region constraints.
arXiv Detail & Related papers (2023-02-15T23:10:06Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
In safe reinforcement learning (SRL) problems, an agent explores the environment to maximize an expected total reward and avoids violation of certain constraints.
This is the first-time analysis of SRL algorithms with global optimal policies.
arXiv Detail & Related papers (2020-11-11T16:05:14Z) - Chance Constrained Policy Optimization for Process Control and
Optimization [1.4908563154226955]
Chemical process optimization and control are affected by 1) plant-model mismatch, 2) process disturbances, and 3) constraints for safe operation.
We propose a chance constrained policy optimization algorithm which guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-07-30T14:20:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.