Technical Report on BaumEvA Evolutionary Optimization Python-Library Testing
- URL: http://arxiv.org/abs/2405.00686v1
- Date: Wed, 6 Mar 2024 15:34:31 GMT
- Title: Technical Report on BaumEvA Evolutionary Optimization Python-Library Testing
- Authors: Vadim Tynchenko, Aleksei Kudryavtsev, Vladimir Nelyub, Aleksei Borodulin, Andrei Gantimurov,
- Abstract summary: Python library BaumEvA implements evolutionary algorithms for optimizing various types of problems.
Test results show that the library provides effective and reliable methods for solving optimization problems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This report presents the test results Python library BaumEvA, which implements evolutionary algorithms for optimizing various types of problems, including computer vision tasks accompanied by the search for optimal model architectures. Testing was carried out to evaluate the effectiveness and reliability of the pro-posed methods, as well as to determine their applicability in various fields. Dur-ing testing, various test functions and parameters of evolutionary algorithms were used, which made it possible to evaluate their performance in a wide range of conditions. Test results showed that the library provides effective and reliable methods for solving optimization problems. However, some limitations were identified related to computational resources and execution time of algorithms on problems with large dimensions. The report includes a detailed description of the tests performed, the results obtained and conclusions about the applicability of the genetic algorithm in various tasks. Recommendations for choosing algorithm pa-rameters and using the library to achieve the best results are also provided. The report may be useful to developers involved in the optimization of complex com-puting systems, as well as to researchers studying the possibilities of using evo-lutionary algorithms in various fields of science and technology.
Related papers
- Time-Series Forecasting in Smart Manufacturing Systems: An Experimental Evaluation of the State-of-the-art Algorithms [0.0]
TSF is growing in various domains including manufacturing.
This study aims to fill this gap by evaluating the SoTA TSF algorithms on thirteen manufacturing datasets.
arXiv Detail & Related papers (2024-11-26T15:10:31Z) - Optimizing Feature Selection with Genetic Algorithms: A Review of Methods and Applications [4.395397502990339]
Genetic algorithms (GAs) have been proposed to provide remedies for drawbacks by avoiding local optima and improving the selection process itself.
This manuscript presents a sweeping review on GA-based feature selection techniques in applications and their effectiveness across different domains.
arXiv Detail & Related papers (2024-09-05T22:28:42Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
Large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications.
For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work.
We perform a detailed coarse-to-fine analysis of the inference performance of various code libraries.
arXiv Detail & Related papers (2024-04-17T15:57:50Z) - Frog-Snake prey-predation Relationship Optimization (FSRO) : A novel nature-inspired metaheuristic algorithm for feature selection [0.0]
This study proposes the Frog-Snake prey-predation Relationship Optimization (FSRO) algorithm.
It is inspired by the prey-predation relationship between frogs and snakes for application to discrete optimization problems.
The proposed algorithm conducts computational experiments on feature selection using 26 types of machine learning datasets.
arXiv Detail & Related papers (2024-02-13T06:39:15Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z) - A bi-level encoding scheme for the clustered shortest-path tree problem
in multifactorial optimization [1.471992435706872]
The Clustered Shortest-Path Tree Problem (CluSPT) plays an important role in various types of optimization problems in real-life.
Recently, some Multifactorial Evolutionary Algorithm (MFEA) have been introduced to deal with the CluSPT.
This paper describes a MFEA-based approach to solve the CluSPT.
arXiv Detail & Related papers (2021-02-12T13:36:07Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.