Optimizing Feature Selection with Genetic Algorithms: A Review of Methods and Applications
- URL: http://arxiv.org/abs/2409.14563v1
- Date: Thu, 5 Sep 2024 22:28:42 GMT
- Title: Optimizing Feature Selection with Genetic Algorithms: A Review of Methods and Applications
- Authors: Zhila Yaseen Taha, Abdulhady Abas Abdullah, Tarik A. Rashid,
- Abstract summary: Genetic algorithms (GAs) have been proposed to provide remedies for drawbacks by avoiding local optima and improving the selection process itself.
This manuscript presents a sweeping review on GA-based feature selection techniques in applications and their effectiveness across different domains.
- Score: 4.395397502990339
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Analyzing large datasets to select optimal features is one of the most important research areas in machine learning and data mining. This feature selection procedure involves dimensionality reduction which is crucial in enhancing the performance of the model, making it less complex. Recently, several types of attribute selection methods have been proposed that use different approaches to obtain representative subsets of the attributes. However, population-based evolutionary algorithms like Genetic Algorithms (GAs) have been proposed to provide remedies for these drawbacks by avoiding local optima and improving the selection process itself. This manuscript presents a sweeping review on GA-based feature selection techniques in applications and their effectiveness across different domains. This review was conducted using the PRISMA methodology; hence, the systematic identification, screening, and analysis of relevant literature were performed. Thus, our results hint that the field's hybrid GA methodologies including, but not limited to, GA-Wrapper feature selector and HGA-neural networks, have substantially improved their potential through the resolution of problems such as exploration of unnecessary search space, accuracy performance problems, and complexity. The conclusions of this paper would result in discussing the potential that GAs bear in feature selection and future research directions for their enhancement in applicability and performance.
Related papers
- Large-scale Multi-objective Feature Selection: A Multi-phase Search Space Shrinking Approach [0.27624021966289597]
Feature selection is a crucial step in machine learning, especially for high-dimensional datasets.
This paper proposes a novel large-scale multi-objective evolutionary algorithm based on the search space shrinking, termed LMSSS.
The effectiveness of the proposed algorithm is demonstrated through comprehensive experiments on 15 large-scale datasets.
arXiv Detail & Related papers (2024-10-13T23:06:10Z) - Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization [16.491060073775884]
We introduce an iterative gene panel selection strategy applicable to clustering tasks in single-cell genomics.
Our method integrates results from other gene selection algorithms, providing valuable preliminary boundaries.
We incorporate the nature of the exploration process in reinforcement learning (RL) and its capability for continuous optimization.
arXiv Detail & Related papers (2024-06-11T16:21:33Z) - ERASE: Benchmarking Feature Selection Methods for Deep Recommender Systems [40.838320650137625]
This paper presents ERASE, a comprehensive bEnchmaRk for feAture SElection for Deep Recommender Systems (DRS)
ERASE comprises a thorough evaluation of eleven feature selection methods, covering both traditional and deep learning approaches.
Our code is available online for ease of reproduction.
arXiv Detail & Related papers (2024-03-19T11:49:35Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Dual-stage optimizer for systematic overestimation adjustment applied to
multi-objective genetic algorithms for biomarker selection [0.18648070031379424]
Biomarker identification with feature selection methods can be addressed as a multi-objective problem with trade-offs between predictive ability and parsimony in the number of features.
We propose DOSA-MO, a novel multi-objective optimization wrapper algorithm that learns how the original estimation, its variance, and the feature set size of the solutions predict the overestimation.
arXiv Detail & Related papers (2023-12-27T16:13:14Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - The FAIRy Tale of Genetic Algorithms [1.0957528713294875]
We have extended Findable, Accessible, Interoperable and Reusable (FAIR) data principles to enable Genetic and reusability of algorithms.
We have presented an overview of methodological developments and variants of GA that makes it challenging to reproduce or even find the right source.
This work can be extended to numerous machine learning algorithms/methods.
arXiv Detail & Related papers (2023-04-29T11:36:09Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Multivariate feature ranking of gene expression data [62.997667081978825]
We propose two new multivariate feature ranking methods based on pairwise correlation and pairwise consistency.
We statistically prove that the proposed methods outperform the state of the art feature ranking methods Clustering Variation, Chi Squared, Correlation, Information Gain, ReliefF and Significance.
arXiv Detail & Related papers (2021-11-03T17:19:53Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
We propose an outlier detection ensemble framework with embedded feature selection (ODEFS)
For each random sub-sampling based learning component, ODEFS unifies feature selection and outlier detection into a pairwise ranking formulation.
We adopt the thresholded self-paced learning to simultaneously optimize feature selection and example selection.
arXiv Detail & Related papers (2020-01-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.