Leveraging Large Language Models in Human-Robot Interaction: A Critical Analysis of Potential and Pitfalls
- URL: http://arxiv.org/abs/2405.00693v2
- Date: Wed, 27 Nov 2024 12:30:23 GMT
- Title: Leveraging Large Language Models in Human-Robot Interaction: A Critical Analysis of Potential and Pitfalls
- Authors: Jesse Atuhurra,
- Abstract summary: Large language models (LLM) and vision language models (VLM) present unprecedented opportunities and challenges for socially assistive robots (SARs)
We conduct a meta-study of more than 250 papers exploring major robots in HRI research and significant applications of SARs, emphasizing education, healthcare, and entertainment while addressing societal norms and issues like trust, bias, and ethics that the robot developers must address.
We outline a pathway for the responsible and effective adoption of LLM or VLM into SARs, and we close our discussion by offering caution regarding this deployment.
- Score: 0.0
- License:
- Abstract: The emergence of large language models (LLM) and, consequently, vision language models (VLM) has ignited new imaginations among robotics researchers. At this point, the range of applications to which LLM and VLM can be applied in human-robot interaction (HRI), particularly socially assistive robots (SARs), is unchartered territory. However, LLM and VLM present unprecedented opportunities and challenges for SAR integration. We aim to illuminate the opportunities and challenges when roboticists deploy LLM and VLM in SARs. First, we conducted a meta-study of more than 250 papers exploring 1) major robots in HRI research and 2) significant applications of SARs, emphasizing education, healthcare, and entertainment while addressing 3) societal norms and issues like trust, bias, and ethics that the robot developers must address. Then, we identified 4) critical components of a robot that LLM or VLM can replace while addressing the 5) benefits of integrating LLM into robot designs and the 6) risks involved. Finally, we outline a pathway for the responsible and effective adoption of LLM or VLM into SARs, and we close our discussion by offering caution regarding this deployment.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Robots Can Multitask Too: Integrating a Memory Architecture and LLMs for Enhanced Cross-Task Robot Action Generation [13.181465089984567]
Large Language Models (LLMs) have been recently used in robot applications for grounding common-sense reasoning with the robot's perception and physical abilities.
In this paper, we address incorporating memory processes with LLMs for generating cross-task robot actions, while the robot effectively switches between tasks.
Our results show a significant improvement in performance over a baseline of five robotic tasks, demonstrating the potential of integrating memory with LLMs for combining the robot's action and perception for adaptive task execution.
arXiv Detail & Related papers (2024-07-18T13:38:21Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - MMRo: Are Multimodal LLMs Eligible as the Brain for In-Home Robotics? [33.573056018368504]
This study introduces the first benchmark for evaluating Multimodal LLM for Robotic (MMRo) benchmark.
We identify four essential capabilities perception, task planning, visual reasoning, and safety measurement that MLLMs must possess to qualify as the robot's central processing unit.
Our findings indicate that no single model excels in all areas, suggesting that current MLLMs are not yet trustworthy enough to serve as the cognitive core for robots.
arXiv Detail & Related papers (2024-06-28T07:09:06Z) - Enhancing the LLM-Based Robot Manipulation Through Human-Robot Collaboration [4.2460673279562755]
Large Language Models (LLMs) are gaining popularity in the field of robotics.
This paper proposes a novel approach to enhance the performance of LLM-based autonomous manipulation through Human-Robot Collaboration (HRC)
The approach involves using a prompted GPT-4 language model to decompose high-level language commands into sequences of motions that can be executed by the robot.
arXiv Detail & Related papers (2024-06-20T08:23:49Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
We highlight the critical issues of robustness and safety associated with integrating large language models (LLMs) and vision-language models (VLMs) into robotics applications.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - Large Language Models for Robotics: Opportunities, Challenges, and
Perspectives [46.57277568357048]
Large language models (LLMs) have undergone significant expansion and have been increasingly integrated across various domains.
For embodied tasks, where robots interact with complex environments, text-only LLMs often face challenges due to a lack of compatibility with robotic visual perception.
We propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.
arXiv Detail & Related papers (2024-01-09T03:22:16Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Large Language Models for Robotics: A Survey [40.76581696885846]
Large language models (LLMs) possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots.
This review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning.
arXiv Detail & Related papers (2023-11-13T10:46:35Z) - LLM as A Robotic Brain: Unifying Egocentric Memory and Control [77.0899374628474]
Embodied AI focuses on the study and development of intelligent systems that possess a physical or virtual embodiment (i.e. robots)
Memory and control are the two essential parts of an embodied system and usually require separate frameworks to model each of them.
We propose a novel framework called LLM-Brain: using Large-scale Language Model as a robotic brain to unify egocentric memory and control.
arXiv Detail & Related papers (2023-04-19T00:08:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.