CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making
- URL: http://arxiv.org/abs/2406.09923v2
- Date: Fri, 11 Oct 2024 20:53:05 GMT
- Title: CliBench: A Multifaceted and Multigranular Evaluation of Large Language Models for Clinical Decision Making
- Authors: Mingyu Derek Ma, Chenchen Ye, Yu Yan, Xiaoxuan Wang, Peipei Ping, Timothy S Chang, Wei Wang,
- Abstract summary: We introduce CliBench, a novel benchmark developed from the MIMIC IV dataset.
This benchmark offers a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis.
We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making.
- Score: 16.310913127940857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Artificial Intelligence (AI), especially Large Language Models (LLMs), into the clinical diagnosis process offers significant potential to improve the efficiency and accessibility of medical care. While LLMs have shown some promise in the medical domain, their application in clinical diagnosis remains underexplored, especially in real-world clinical practice, where highly sophisticated, patient-specific decisions need to be made. Current evaluations of LLMs in this field are often narrow in scope, focusing on specific diseases or specialties and employing simplified diagnostic tasks. To bridge this gap, we introduce CliBench, a novel benchmark developed from the MIMIC IV dataset, offering a comprehensive and realistic assessment of LLMs' capabilities in clinical diagnosis. This benchmark not only covers diagnoses from a diverse range of medical cases across various specialties but also incorporates tasks of clinical significance: treatment procedure identification, lab test ordering and medication prescriptions. Supported by structured output ontologies, CliBench enables a precise and multi-granular evaluation, offering an in-depth understanding of LLM's capability on diverse clinical tasks of desired granularity. We conduct a zero-shot evaluation of leading LLMs to assess their proficiency in clinical decision-making. Our preliminary results shed light on the potential and limitations of current LLMs in clinical settings, providing valuable insights for future advancements in LLM-powered healthcare.
Related papers
- MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration [57.98393950821579]
We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
arXiv Detail & Related papers (2025-06-24T17:52:43Z) - MedGUIDE: Benchmarking Clinical Decision-Making in Large Language Models [10.46932473088646]
We introduce MedGUIDE, a new benchmark for evaluating Large Language Models (LLMs) on their ability to make guideline-consistent clinical decisions.<n> MedGUIDE is constructed from 55 curated NCCN decision trees across 17 cancer types.<n>We apply a two-stage quality selection process, combining expert-labeled reward models and LLM-as-a-judge ensembles across ten clinical and linguistic criteria, to select 7,747 high-quality samples.
arXiv Detail & Related papers (2025-05-16T18:21:52Z) - Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.
Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.
We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - ClinicalLab: Aligning Agents for Multi-Departmental Clinical Diagnostics in the Real World [34.35946008449027]
We introduce ClinicalLab, a comprehensive clinical diagnosis agent alignment suite.
ClinicalLab includes ClinicalBench, an end-to-end multi-departmental clinical diagnostic evaluation benchmark.
We evaluate 17 LLMs and find that their performance varies significantly across different departments.
arXiv Detail & Related papers (2024-06-19T23:44:25Z) - Evaluating large language models in medical applications: a survey [1.5923327069574245]
Large language models (LLMs) have emerged as powerful tools with transformative potential across numerous domains.
evaluating the performance of LLMs in medical contexts presents unique challenges due to the complex and critical nature of medical information.
arXiv Detail & Related papers (2024-05-13T05:08:33Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
We build a benchmark ClinicBench to better understand large language models (LLMs) in the clinic.
We first collect eleven existing datasets covering diverse clinical language generation, understanding, and reasoning tasks.
We then construct six novel datasets and clinical tasks that are complex but common in real-world practice.
We conduct an extensive evaluation of twenty-two LLMs under both zero-shot and few-shot settings.
arXiv Detail & Related papers (2024-04-25T15:51:06Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis.
We propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services.
arXiv Detail & Related papers (2024-03-25T06:17:54Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
We present a "reasoning-aware" diagnosis framework that rationalizes the diagnostic process via prompt-based learning.
We propose a novel set of criteria for evaluating machine-generated rationales' potential for real-world clinical settings.
arXiv Detail & Related papers (2023-12-12T16:14:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.