Non-perturbative signatures of fractons in the twisted multi-flavor Schwinger Model
- URL: http://arxiv.org/abs/2405.00745v1
- Date: Tue, 30 Apr 2024 16:15:31 GMT
- Title: Non-perturbative signatures of fractons in the twisted multi-flavor Schwinger Model
- Authors: Pavel P. Popov, Valentin Kasper, Maciej Lewenstein, Erez Zohar, Paolo Stornati, Philipp Hauke,
- Abstract summary: We show that fractons persist in strongly correlated many-body systems.
We find strong fracton signatures even in highly discretized lattice models.
Our work sheds light on how the non-trivial topology of gauge theories persists in challenging non-perturbative regimes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gauge-field configurations with non-trivial topology have profound consequences for the physics of Abelian and non-Abelian gauge theories. Over time, arguments have been gathering for the existence of gauge-field configurations with fractional topological charge, called fractons. Ground-state properties of gauge theories can drastically change in presence of fractons in the path integral. However, understanding the origin of such fractons is usually restricted to semi-classical argumentation. Here, we show that fractons persist in strongly correlated many-body systems, using the multiflavor Schwinger model of quantum electrodynamics as a paradigm example. Through detailed numerical tensor-network analysis, we find strong fracton signatures even in highly discretized lattice models, at sizes that are implementable on already existing quantum-simulation devices. Our work sheds light on how the non-trivial topology of gauge theories persists in challenging non-perturbative regimes, and it shows a path forward to probing it in table-top experiments.
Related papers
- Strongly incoherent gravity [0.0]
A non-entangling version of an arbitrary two-body potential $V(r)$ arises from local measurements and feedback forces.
This produces a non-relativistic model of gravity with fundamental loss of unitarity.
As an alternative to testing entanglement properties, we show that the entire remaining parameter space can be tested by looking for loss of quantum coherence in small systems.
arXiv Detail & Related papers (2023-01-20T01:09:12Z) - Fractonic Luttinger Liquids and Supersolids in a Constrained
Bose-Hubbard Model [0.0]
We show the existence of a variety of exotic quantum phases in the ground states of a Bose-Hubbard model in one dimension.
For integer boson fillings, we perform a mapping of the system to a model of microscopic local dipoles, which are composites of fractons.
We apply a combination of low-energy field theory and large-scale tensor network simulations to demonstrate the emergence of a dipole Luttinger liquid phase.
arXiv Detail & Related papers (2022-10-20T07:51:20Z) - Manipulating Non-Abelian Anyons in a Chiral Multichannel Kondo Model [0.0]
We provide the first numerical evidence that non-Abelian anyons emerge as independent entities in gapless electronic models.
Impressive advances on realizing multichannel Kondo systems with chiral edges may thus bring anyons into reality sooner than expected.
arXiv Detail & Related papers (2022-05-09T16:45:02Z) - Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of
Gauge Theories [3.4075669047370125]
We show how a tunable topological $theta$-term can be added to a prototype theory with gauge symmetry.
The model can be realized experimentally in a single-species Bose--Hubbard model in an optical superlattice with three different spatial periods.
This work opens the door towards studying the rich physics of topological gauge-theory terms in large-scale cold-atom quantum simulators.
arXiv Detail & Related papers (2022-04-13T18:00:01Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Origin of staircase prethermalization in lattice gauge theories [0.0]
Quantum many-body systems with exact local gauge symmetries exhibit rich out-of-equilibrium physics.
We present evidence of textitstaircase prethermalization in a $mathrmZ$ lattice gauge theory.
arXiv Detail & Related papers (2020-04-15T18:00:08Z) - Tensor network models of AdS/qCFT [69.6561021616688]
We introduce the notion of a quasiperiodic conformal field theory (qCFT)
We show that qCFT can be best understood as belonging to a paradigm of discrete holography.
arXiv Detail & Related papers (2020-04-08T18:00:05Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.