Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of
Gauge Theories
- URL: http://arxiv.org/abs/2204.06570v2
- Date: Fri, 15 Apr 2022 12:14:37 GMT
- Title: Tuning the Topological $\theta$-Angle in Cold-Atom Quantum Simulators of
Gauge Theories
- Authors: Jad C. Halimeh, Ian P. McCulloch, Bing Yang, Philipp Hauke
- Abstract summary: We show how a tunable topological $theta$-term can be added to a prototype theory with gauge symmetry.
The model can be realized experimentally in a single-species Bose--Hubbard model in an optical superlattice with three different spatial periods.
This work opens the door towards studying the rich physics of topological gauge-theory terms in large-scale cold-atom quantum simulators.
- Score: 3.4075669047370125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The topological $\theta$-angle in gauge theories engenders a series of
fundamental phenomena, including violations of charge-parity (CP) symmetry,
dynamical topological transitions, and confinement--deconfinement transitions.
At the same time, it poses major challenges for theoretical studies, as it
implies a sign problem in numerical simulations. Analog quantum simulators open
the promising prospect of treating quantum many-body systems with such
topological terms, but, contrary to their digital counterparts, they have not
yet demonstrated the capacity to control the $\theta$-angle. Here, we
demonstrate how a tunable topological $\theta$-term can be added to a prototype
theory with $\mathrm{U}(1)$ gauge symmetry, a discretized version of quantum
electrodynamics in one spatial dimension. As we show, the model can be realized
experimentally in a single-species Bose--Hubbard model in an optical
superlattice with three different spatial periods, thus requiring only standard
experimental resources. Through numerical calculations obtained from the
time-dependent density matrix renormalization group method and exact
diagonalization, we benchmark the model system, and illustrate how salient
effects due to the $\theta$-term can be observed. These include charge
confinement, the weakening of quantum many-body scarring, as well as the
disappearance of Coleman's phase transition due to explicit breaking of CP
symmetry. This work opens the door towards studying the rich physics of
topological gauge-theory terms in large-scale cold-atom quantum simulators.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Observation of microscopic confinement dynamics by a tunable topological
$\theta$-angle [12.311760383676763]
We report on the experimental realization of a tunable topological $theta$-angle in a Bose--Hubbard gauge-theory quantum simulator.
We demonstrate the rich physics due to this angle by the direct observation of the confinement--deconfinement transition of $(1+1)$-dimensional quantum electrodynamics.
arXiv Detail & Related papers (2023-06-20T18:00:02Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Ergodicity Breaking Under Confinement in Cold-Atom Quantum Simulators [1.3367376307273382]
We consider the spin-$1/2$ quantum link formulation of $1+1$D quantum electrodynamics with a topological $theta$-angle.
We show an interplay between confinement and the ergodicity-breaking paradigms of quantum many-body scarring and Hilbert-space fragmentation.
arXiv Detail & Related papers (2023-01-18T19:00:01Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Simulating Quantum Mechanics with a $\theta$-term and an 't Hooft
Anomaly on a Synthetic Dimension [2.710787786741731]
A topological $theta$-term in gauge theories, including quantum chromodynamics in 3+1 dimensions, gives rise to a sign problem that makes classical Monte Carlo simulations impractical.
Quantum simulations are not subject to such sign problems and are a promising approach to studying these theories in the future.
We propose an experimental scheme for the real-time simulation of a particle on a circle with a $theta$-term and a $mathbbZ_n$ potential using a synthetic dimension encoded in a Rydberg atom.
arXiv Detail & Related papers (2021-07-16T18:34:46Z) - Investigating a (3+1)D Topological $\theta$-Term in the Hamiltonian
Formulation of Lattice Gauge Theories for Quantum and Classical Simulations [0.0]
We derive the (3+1)D topological $theta$-term for Abelian and non-Abelian lattice gauge theories.
We study numerically the zero-temperature phase structure of a (3+1)D U(1) lattice gauge theory.
arXiv Detail & Related papers (2021-05-13T01:10:42Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Driven-dissipative phase transition in a Kerr oscillator: From
semiclassical $\mathcal{PT}$ symmetry to quantum fluctuations [0.0]
We study a minimal model that has a driven-dissipative quantum phase transition.
We analyze the critical phenomena in this system, showing which aspects can be captured by each approach.
Due to its simplicity and solvability, this model can serve as a paradigm for exploration of open quantum many-body physics.
arXiv Detail & Related papers (2020-07-02T22:39:35Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.