Guided Conditional Diffusion Classifier (ConDiff) for Enhanced Prediction of Infection in Diabetic Foot Ulcers
- URL: http://arxiv.org/abs/2405.00858v1
- Date: Wed, 1 May 2024 20:47:06 GMT
- Title: Guided Conditional Diffusion Classifier (ConDiff) for Enhanced Prediction of Infection in Diabetic Foot Ulcers
- Authors: Palawat Busaranuvong, Emmanuel Agu, Deepak Kumar, Shefalika Gautam, Reza Saadati Fard, Bengisu Tulu, Diane Strong,
- Abstract summary: ConDiff is a novel deep-learning infection detection model that combines guided image synthesis with a Conditional denoising diffusion model and distance-based classification.
ConDiff demonstrated superior performance with an accuracy of 83% and an F1-score of 0.858, outperforming state-of-the-art models by at least 3%.
- Score: 2.4548085068515286
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To detect infected wounds in Diabetic Foot Ulcers (DFUs) from photographs, preventing severe complications and amputations. Methods: This paper proposes the Guided Conditional Diffusion Classifier (ConDiff), a novel deep-learning infection detection model that combines guided image synthesis with a denoising diffusion model and distance-based classification. The process involves (1) generating guided conditional synthetic images by injecting Gaussian noise to a guide image, followed by denoising the noise-perturbed image through a reverse diffusion process, conditioned on infection status and (2) classifying infections based on the minimum Euclidean distance between synthesized images and the original guide image in embedding space. Results: ConDiff demonstrated superior performance with an accuracy of 83% and an F1-score of 0.858, outperforming state-of-the-art models by at least 3%. The use of a triplet loss function reduces overfitting in the distance-based classifier. Conclusions: ConDiff not only enhances diagnostic accuracy for DFU infections but also pioneers the use of generative discriminative models for detailed medical image analysis, offering a promising approach for improving patient outcomes.
Related papers
- SkinDualGen: Prompt-Driven Diffusion for Simultaneous Image-Mask Generation in Skin Lesions [0.0]
We propose a novel method that leverages the pretrained Stable Diffusion-2.0 model to generate high-quality synthetic skin lesion images.<n>A hybrid dataset combining real and synthetic data markedly enhances the performance of classification and segmentation models.
arXiv Detail & Related papers (2025-07-26T15:00:37Z) - DiffDenoise: Self-Supervised Medical Image Denoising with Conditional Diffusion Models [15.941115339422655]
We propose DiffDenoise, a powerful self-supervised denoising approach tailored for medical images.
Our results demonstrate that DiffDenoise outperforms existing state-of-the-art methods in both synthetic and real-world medical image denoising tasks.
arXiv Detail & Related papers (2025-03-31T22:15:53Z) - Explainable, Multi-modal Wound Infection Classification from Images Augmented with Generated Captions [2.4548085068515286]
Infections in Diabetic Foot Ulcers (DFUs) can cause severe complications, including tissue death and limb amputation.
Previous machine learning methods have focused on identifying infections by analyzing wound images alone.
In this study, we aim to improve infection detection by introducing Synthetic Caption Augmented Retrieval for Wound Infection Detection.
arXiv Detail & Related papers (2025-02-27T17:04:00Z) - DiffDoctor: Diagnosing Image Diffusion Models Before Treating [57.82359018425674]
We propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts.
We collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process.
The learned artifact detector is then involved in the second stage to optimize the diffusion model by providing pixel-level feedback.
arXiv Detail & Related papers (2025-01-21T18:56:41Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - FDiff-Fusion:Denoising diffusion fusion network based on fuzzy learning for 3D medical image segmentation [21.882697860720803]
We propose a denoising diffusion fusion network based on fuzzy learning for 3D medical image segmentation (FDiff-Fusion)
By integrating the denoising diffusion model into the classical U-Net network, this model can effectively extract rich semantic information from input medical images.
Results show that FDiff-Fusion significantly improves the Dice scores and HD95 distance on two datasets.
arXiv Detail & Related papers (2024-07-22T02:27:01Z) - Incorporating Improved Sinusoidal Threshold-based Semi-supervised Method
and Diffusion Models for Osteoporosis Diagnosis [0.43512163406552007]
Osteoporosis is a common skeletal disease that seriously affects patients' quality of life.
Traditional osteoporosis diagnosis methods are expensive and complex.
This paper can automatically diagnose osteoporosis based on patient's imaging data, which has the advantages of convenience, accuracy, and low cost.
arXiv Detail & Related papers (2024-03-11T08:11:46Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - DiffMIC: Dual-Guidance Diffusion Network for Medical Image
Classification [32.67098520984195]
We propose the first diffusion-based model (named DiffMIC) to address general medical image classification.
Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin.
arXiv Detail & Related papers (2023-03-19T09:15:45Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols.
Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation.
arXiv Detail & Related papers (2022-07-17T15:53:24Z) - (Certified!!) Adversarial Robustness for Free! [116.6052628829344]
We certify 71% accuracy on ImageNet under adversarial perturbations constrained to be within a 2-norm of 0.5.
We obtain these results using only pretrained diffusion models and image classifiers, without requiring any fine tuning or retraining of model parameters.
arXiv Detail & Related papers (2022-06-21T17:27:27Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.