論文の概要: Quantum Federated Learning Experiments in the Cloud with Data Encoding
- arxiv url: http://arxiv.org/abs/2405.00909v1
- Date: Wed, 1 May 2024 23:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 18:23:47.316020
- Title: Quantum Federated Learning Experiments in the Cloud with Data Encoding
- Title(参考訳): データエンコーディングによるクラウドにおける量子フェデレーション学習実験
- Authors: Shiva Raj Pokhrel, Naman Yash, Jonathan Kua, Gang Li, Lei Pan,
- Abstract要約: 量子フェデレートラーニング(Quantum Federated Learning, QFL)は、量子ネットワーク上でのフェデレーションラーニング(FL)の展開を目的とした、新たな概念である。
我々は、QFLをクラウドプラットフォームにデプロイする際の課題について検討し、量子的複雑さとプラットフォーム制限を強調した。
- 参考スコア(独自算出の注目度): 14.666615671419848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Federated Learning (QFL) is an emerging concept that aims to unfold federated learning (FL) over quantum networks, enabling collaborative quantum model training along with local data privacy. We explore the challenges of deploying QFL on cloud platforms, emphasizing quantum intricacies and platform limitations. The proposed data-encoding-driven QFL, with a proof of concept (GitHub Open Source) using genomic data sets on quantum simulators, shows promising results.
- Abstract(参考訳): 量子フェデレーション学習(QFL)は、量子ネットワーク上でのフェデレーション学習(FL)の展開を目的とした、新たな概念である。
我々は、QFLをクラウドプラットフォームにデプロイする際の課題について検討し、量子の複雑さとプラットフォームの制限を強調した。
提案したQFLは、量子シミュレータ上のゲノムデータセットを用いた概念実証(GitHub Open Source)により、有望な結果を示している。
関連論文リスト
- Quantum delegated and federated learning via quantum homomorphic encryption [0.5939164722752263]
本稿では,量子デリゲート型およびフェデレート型学習を無理論データプライバシ保証で実現可能な汎用フレームワークを提案する。
この枠組みの下での学習と推論は、盲点量子コンピューティングに基づくスキームに比べて通信の複雑さが著しく低いことが示される。
論文 参考訳(メタデータ) (2024-09-28T14:13:50Z) - Foundations of Quantum Federated Learning Over Classical and Quantum
Networks [59.121263013213756]
量子フェデレーション学習(QFL)は、古典的フェデレーション学習(FL)の利点と量子技術の計算能力を統合する新しいフレームワークである。
QFLは古典的通信網と量子的通信網の両方に展開できる。
論文 参考訳(メタデータ) (2023-10-23T02:56:00Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
我々は、QUantum Network Communication (SeQUeNCe) のオープンソースシミュレータを用いて、2つの原子周波数コム(AFC)吸収量子メモリ間の絡み合いの発生をシミュレートする。
本研究は,SeQUeNCe における truncated Fock 空間内の光量子状態の表現を実現する。
本研究では,SPDC音源の平均光子数と,平均光子数とメモリモード数の両方で異なる絡み合い発生率を観測する。
論文 参考訳(メタデータ) (2022-12-17T05:51:17Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Entangled Datasets for Quantum Machine Learning [0.0]
代わりに量子状態からなる量子データセットを使うべきだと我々は主張する。
NTangledデータセットの状態を生成するために量子ニューラルネットワークをどのように訓練するかを示す。
また、拡張性があり、量子回路によって準備された状態で構成される、別の絡み合いベースのデータセットについても検討する。
論文 参考訳(メタデータ) (2021-09-08T02:20:13Z) - QuantumFed: A Federated Learning Framework for Collaborative Quantum
Training [10.635097939284751]
本稿では,複数の量子ノードを持つ量子連合学習フレームワークであるQuantumFedを提案する。
我々の実験は、我々のフレームワークの実現可能性と堅牢性を示している。
論文 参考訳(メタデータ) (2021-06-16T20:28:11Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - SeQUeNCe: A Customizable Discrete-Event Simulator of Quantum Networks [53.56179714852967]
この研究は、包括的でカスタマイズ可能な量子ネットワークシミュレータであるSeQUeNCeを開発した。
本研究では,9つのルータに量子メモリを具備したフォトニック量子ネットワークをシミュレートし,SeQUeNCeの利用を実証する。
オープンソースツールとしてSeQUeNCeをリリースしています。
論文 参考訳(メタデータ) (2020-09-25T01:52:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。