論文の概要: A didactic approach to quantum machine learning with a single qubit
- arxiv url: http://arxiv.org/abs/2211.13191v2
- Date: Sat, 8 Apr 2023 13:52:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 21:32:03.404874
- Title: A didactic approach to quantum machine learning with a single qubit
- Title(参考訳): 単一量子ビットを用いた量子機械学習へのディダクティックなアプローチ
- Authors: Elena Pe\~na Tapia, Giannicola Scarpa, Alejandro Pozas-Kerstjens
- Abstract要約: 我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents, via an explicit example with a real-world dataset, a
hands-on introduction to the field of quantum machine learning (QML). We focus
on the case of learning with a single qubit, using data re-uploading
techniques. After a discussion of the relevant background in quantum computing
and machine learning we provide a thorough explanation of the data re-uploading
models that we consider, and implement the different proposed formulations in
toy and real-world datasets using the qiskit quantum computing SDK. We find
that, as in the case of classical neural networks, the number of layers is a
determining factor in the final accuracy of the models. Moreover, and
interestingly, the results show that single-qubit classifiers can achieve a
performance that is on-par with classical counterparts under the same set of
training conditions. While this cannot be understood as a proof of the
advantage of quantum machine learning, it points to a promising research
direction, and raises a series of questions that we outline.
- Abstract(参考訳): 本稿では,実世界のデータセットを用いた明示的な例を通して,量子機械学習(qml)の分野について紹介する。
データ再アップロード技術を用いて,単一キュービットで学習する事例に注目した。
量子コンピューティングと機械学習の関連背景に関する議論の後、我々は考慮すべきデータ再ロードモデルについて詳しく説明し、Qiskit量子コンピューティングSDKを使用して、おもちゃと現実世界のデータセットで提案された異なる定式化を実装した。
古典的ニューラルネットワークの場合と同様に、層の数はモデルの最終精度の決定要因であることがわかった。
さらに興味深いことに、シングルキュービット分類器は、同じトレーニング条件下で、古典的比較器と同等の性能を達成できることが示されている。
これは量子機械学習の利点の証明として理解できないが、有望な研究の方向性を示し、我々が概説した一連の疑問を提起している。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
初期の量子コンピューティングの領域において重要な取り組みであるクロスプラットフォーム検証は、同一のアルゴリズムを実行する2つの不完全な量子デバイスとの類似性を特徴づけようと試みている。
本稿では,この課題におけるデータの形式化が2つの異なるモダリティを具現化する,革新的なマルチモーダル学習手法を提案する。
我々はこれらのモダリティから知識を独立して抽出するマルチモーダルニューラルネットワークを考案し、続いて融合操作により包括的データ表現を生成する。
論文 参考訳(メタデータ) (2023-11-07T04:35:03Z) - Nonnegative/Binary Matrix Factorization for Image Classification using
Quantum Annealing [0.0]
画像分類のための量子アニールを用いた行列分解法を実装した。
以上の結果から,NAMFで訓練したモデルの精度は,データ量,特徴量,エポックスが小さい場合,従来の機械学習手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-02T06:41:27Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Entangled Datasets for Quantum Machine Learning [0.0]
代わりに量子状態からなる量子データセットを使うべきだと我々は主張する。
NTangledデータセットの状態を生成するために量子ニューラルネットワークをどのように訓練するかを示す。
また、拡張性があり、量子回路によって準備された状態で構成される、別の絡み合いベースのデータセットについても検討する。
論文 参考訳(メタデータ) (2021-09-08T02:20:13Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
本資料は、ハイブリッド量子古典ニューラルネットワークのトレーニングと性能に関する実験結果を含む。
シミュレーションは時間を要するが、量子ネットワークは時間を要するが、古典的なネットワークを克服する。
論文 参考訳(メタデータ) (2021-08-19T18:49:30Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum Self-Supervised Learning [22.953284192004034]
対照的自己監督学習のためのハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
ibmq_paris量子コンピュータ上の見えない画像を分類するために、最良の量子モデルを適用します。
論文 参考訳(メタデータ) (2021-03-26T18:00:00Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。