Network reconstruction via the minimum description length principle
- URL: http://arxiv.org/abs/2405.01015v2
- Date: Tue, 7 May 2024 16:54:52 GMT
- Title: Network reconstruction via the minimum description length principle
- Authors: Tiago P. Peixoto,
- Abstract summary: We propose an alternative nonparametric regularization scheme based on hierarchical Bayesian inference and weight quantization.
Our approach follows the minimum description length (MDL) principle, and uncovers the weight distribution that allows for the most compression of the data.
We demonstrate that our scheme yields systematically increased accuracy in the reconstruction of both artificial and empirical networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A fundamental problem associated with the task of network reconstruction from dynamical or behavioral data consists in determining the most appropriate model complexity in a manner that prevents overfitting, and produces an inferred network with a statistically justifiable number of edges. The status quo in this context is based on $L_{1}$ regularization combined with cross-validation. However, besides its high computational cost, this commonplace approach unnecessarily ties the promotion of sparsity with weight "shrinkage". This combination forces a trade-off between the bias introduced by shrinkage and the network sparsity, which often results in substantial overfitting even after cross-validation. In this work, we propose an alternative nonparametric regularization scheme based on hierarchical Bayesian inference and weight quantization, which does not rely on weight shrinkage to promote sparsity. Our approach follows the minimum description length (MDL) principle, and uncovers the weight distribution that allows for the most compression of the data, thus avoiding overfitting without requiring cross-validation. The latter property renders our approach substantially faster to employ, as it requires a single fit to the complete data. As a result, we have a principled and efficient inference scheme that can be used with a large variety of generative models, without requiring the number of edges to be known in advance. We also demonstrate that our scheme yields systematically increased accuracy in the reconstruction of both artificial and empirical networks. We highlight the use of our method with the reconstruction of interaction networks between microbial communities from large-scale abundance samples involving in the order of $10^{4}$ to $10^{5}$ species, and demonstrate how the inferred model can be used to predict the outcome of interventions in the system.
Related papers
- Posterior and variational inference for deep neural networks with heavy-tailed weights [0.0]
We consider deep neural networks in a Bayesian framework with a prior distribution sampling the network weights at random.
We show that the corresponding posterior distribution achieves near-optimal minimax contraction rates.
We also provide variational Bayes counterparts of the results, that show that mean-field variational approximations still benefit from near-optimal theoretical support.
arXiv Detail & Related papers (2024-06-05T15:24:20Z) - Learning a Gaussian Mixture for Sparsity Regularization in Inverse
Problems [2.375943263571389]
In inverse problems, the incorporation of a sparsity prior yields a regularization effect on the solution.
We propose a probabilistic sparsity prior formulated as a mixture of Gaussians, capable of modeling sparsity with respect to a generic basis.
We put forth both a supervised and an unsupervised training strategy to estimate the parameters of this network.
arXiv Detail & Related papers (2024-01-29T22:52:57Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
Implicit neural networks offer competitive performance and reduced memory consumption.
They can remain brittle with respect to input adversarial perturbations.
This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks.
arXiv Detail & Related papers (2021-12-10T03:08:55Z) - Kronecker Factorization for Preventing Catastrophic Forgetting in
Large-scale Medical Entity Linking [7.723047334864811]
In the medical domain, sequential training on tasks may sometimes be the only way to train models.
catastrophic forgetting, i.e., a substantial drop in accuracy on prior tasks when a model is updated for a new task.
We show the effectiveness of this technique on the important and illustrative task of medical entity linking across three datasets.
arXiv Detail & Related papers (2021-11-11T01:51:01Z) - Robustness to Pruning Predicts Generalization in Deep Neural Networks [29.660568281957072]
We introduce prunability: the smallest emphfraction of a network's parameters that can be kept while pruning without adversely affecting its training loss.
We show that this measure is highly predictive of a model's generalization performance across a large set of convolutional networks trained on CIFAR-10.
arXiv Detail & Related papers (2021-03-10T11:39:14Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Stable Recovery of Entangled Weights: Towards Robust Identification of
Deep Neural Networks from Minimal Samples [0.0]
We introduce the so-called entangled weights, which compose weights of successive layers intertwined with suitable diagonal and invertible matrices depending on the activation functions and their shifts.
We prove that entangled weights are completely and stably approximated by an efficient and robust algorithm.
In terms of practical impact, our study shows that we can relate input-output information uniquely and stably to network parameters, providing a form of explainability.
arXiv Detail & Related papers (2021-01-18T16:31:19Z) - Mixed-Privacy Forgetting in Deep Networks [114.3840147070712]
We show that the influence of a subset of the training samples can be removed from the weights of a network trained on large-scale image classification tasks.
Inspired by real-world applications of forgetting techniques, we introduce a novel notion of forgetting in mixed-privacy setting.
We show that our method allows forgetting without having to trade off the model accuracy.
arXiv Detail & Related papers (2020-12-24T19:34:56Z) - Squared $\ell_2$ Norm as Consistency Loss for Leveraging Augmented Data
to Learn Robust and Invariant Representations [76.85274970052762]
Regularizing distance between embeddings/representations of original samples and augmented counterparts is a popular technique for improving robustness of neural networks.
In this paper, we explore these various regularization choices, seeking to provide a general understanding of how we should regularize the embeddings.
We show that the generic approach we identified (squared $ell$ regularized augmentation) outperforms several recent methods, which are each specially designed for one task.
arXiv Detail & Related papers (2020-11-25T22:40:09Z) - Improve Generalization and Robustness of Neural Networks via Weight
Scale Shifting Invariant Regularizations [52.493315075385325]
We show that a family of regularizers, including weight decay, is ineffective at penalizing the intrinsic norms of weights for networks with homogeneous activation functions.
We propose an improved regularizer that is invariant to weight scale shifting and thus effectively constrains the intrinsic norm of a neural network.
arXiv Detail & Related papers (2020-08-07T02:55:28Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
We present a novel Markov chain Monte Carlo algorithm for posterior inference that adaptively sets the truncation level using auxiliary slice variables.
The efficacy of the proposed algorithm is evaluated on several popular nonparametric models.
arXiv Detail & Related papers (2020-06-24T17:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.