Uncertainty quantification and posterior sampling for network reconstruction
- URL: http://arxiv.org/abs/2503.07736v1
- Date: Mon, 10 Mar 2025 18:00:14 GMT
- Title: Uncertainty quantification and posterior sampling for network reconstruction
- Authors: Tiago P. Peixoto,
- Abstract summary: We present an efficient MCMC algorithm for sampling from posterior distributions of reconstructed networks.<n>Our algorithm is specially suited for the inference of large and sparse networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Network reconstruction is the task of inferring the unseen interactions between elements of a system, based only on their behavior or dynamics. This inverse problem is in general ill-posed, and admits many solutions for the same observation. Nevertheless, the vast majority of statistical methods proposed for this task -- formulated as the inference of a graphical generative model -- can only produce a ``point estimate,'' i.e. a single network considered the most likely. In general, this can give only a limited characterization of the reconstruction, since uncertainties and competing answers cannot be conveyed, even if their probabilities are comparable, while being structurally different. In this work we present an efficient MCMC algorithm for sampling from posterior distributions of reconstructed networks, which is able to reveal the full population of answers for a given reconstruction problem, weighted according to their plausibilities. Our algorithm is general, since it does not rely on specific properties of particular generative models, and is specially suited for the inference of large and sparse networks, since in this case an iteration can be performed in time $O(N\log^2 N)$ for a network of $N$ nodes, instead of $O(N^2)$, as would be the case for a more naive approach. We demonstrate the suitability of our method in providing uncertainties and consensus of solutions (which provably increases the reconstruction accuracy) in a variety of synthetic and empirical cases.
Related papers
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
We provide the first proof of convergence for normalized error feedback algorithms across a wide range of machine learning problems.
We show that due to their larger allowable stepsizes, our new normalized error feedback algorithms outperform their non-normalized counterparts on various tasks.
arXiv Detail & Related papers (2024-10-22T10:19:27Z) - Network reconstruction via the minimum description length principle [0.0]
We propose an alternative nonparametric regularization scheme based on hierarchical Bayesian inference and weight quantization.
Our approach follows the minimum description length (MDL) principle, and uncovers the weight distribution that allows for the most compression of the data.
We demonstrate that our scheme yields systematically increased accuracy in the reconstruction of both artificial and empirical networks.
arXiv Detail & Related papers (2024-05-02T05:35:09Z) - A Robustness Analysis of Blind Source Separation [91.3755431537592]
Blind source separation (BSS) aims to recover an unobserved signal from its mixture $X=f(S)$ under the condition that the transformation $f$ is invertible but unknown.
We present a general framework for analysing such violations and quantifying their impact on the blind recovery of $S$ from $X$.
We show that a generic BSS-solution in response to general deviations from its defining structural assumptions can be profitably analysed in the form of explicit continuity guarantees.
arXiv Detail & Related papers (2023-03-17T16:30:51Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical
Guarantees and Implementation Details [0.5156484100374059]
Sparse deep neural networks have proven to be efficient for predictive model building in large-scale studies.
We propose a Bayesian sparse solution using spike-and-slab Gaussian priors to allow for node selection during training.
We establish the fundamental result of variational posterior consistency together with the characterization of prior parameters.
arXiv Detail & Related papers (2021-08-25T00:48:07Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Stable Recovery of Entangled Weights: Towards Robust Identification of
Deep Neural Networks from Minimal Samples [0.0]
We introduce the so-called entangled weights, which compose weights of successive layers intertwined with suitable diagonal and invertible matrices depending on the activation functions and their shifts.
We prove that entangled weights are completely and stably approximated by an efficient and robust algorithm.
In terms of practical impact, our study shows that we can relate input-output information uniquely and stably to network parameters, providing a form of explainability.
arXiv Detail & Related papers (2021-01-18T16:31:19Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
We present a generalization error analysis for a class of neural networks suitable for sparse reconstruction from few linear measurements.
Under realistic conditions, the generalization error scales only logarithmically in the number of layers, and at most linear in number of measurements.
arXiv Detail & Related papers (2020-10-29T15:05:43Z) - Parameterizing uncertainty by deep invertible networks, an application
to reservoir characterization [0.9176056742068814]
Uncertainty quantification for full-waveform inversion provides a probabilistic characterization of the ill-conditioning of the problem.
We propose an approach characterized by training a deep network that "pushes forward" Gaussian random inputs into the model space as if they were sampled from the actual posterior distribution.
arXiv Detail & Related papers (2020-04-16T18:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.