論文の概要: Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation
- arxiv url: http://arxiv.org/abs/2405.01113v1
- Date: Thu, 2 May 2024 09:21:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 17:13:51.756004
- Title: Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation
- Title(参考訳): 単眼深度推定のための領域変換合成データ生成
- Authors: Seungyeop Lee, Knut Peterson, Solmaz Arezoomandan, Bill Cai, Peihan Li, Lifeng Zhou, David Han,
- Abstract要約: 本稿では,3次元合成環境とCycleGANドメイン転送を用いたシミュレーションデータ生成手法を提案する。
本研究では,DenseDepth構造に基づく深度推定モデルを実データと模擬データの異なるトレーニングセットを用いて学習することにより,このデータ生成手法を,人気のNYUDepth V2データセットと比較する。
本稿では,Huskyロボットによる新たに収集した画像とLiDAR深度データを用いたモデルの性能評価を行い,GAN変換データを実世界のデータ,特に深度推定の有効な代替手段として有効であることを示す。
- 参考スコア(独自算出の注目度): 9.812476193015488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major obstacle to the development of effective monocular depth estimation algorithms is the difficulty in obtaining high-quality depth data that corresponds to collected RGB images. Collecting this data is time-consuming and costly, and even data collected by modern sensors has limited range or resolution, and is subject to inconsistencies and noise. To combat this, we propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer. We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data. We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
- Abstract(参考訳): 効率的な単眼深度推定アルゴリズムを開発する上での大きな障害は、収集したRGB画像に対応する高品質の深度データを得るのが困難である。
このデータの収集には時間と費用がかかり、現代のセンサーが収集したデータでさえ範囲や解像度が限られており、矛盾やノイズにさらされている。
そこで本研究では,3次元合成環境とCycleGANドメイン転送を用いたシミュレーションデータ生成手法を提案する。
本研究では,DenseDepth構造に基づく深度推定モデルを実データと模擬データの異なるトレーニングセットを用いて学習することにより,このデータ生成手法を,人気のNYUDepth V2データセットと比較する。
本稿では,Huskyロボットによる新たに収集した画像とLiDAR深度データを用いたモデルの性能評価を行い,GAN変換データを実世界のデータ,特に深度推定の有効な代替手段として有効であることを示す。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Thermal-Infrared Remote Target Detection System for Maritime Rescue
based on Data Augmentation with 3D Synthetic Data [4.66313002591741]
本稿では,深層学習とデータ拡張を用いた海難救助のための熱赤外(TIR)遠隔目標検出システムを提案する。
データセットの不足に対処し、モデルの堅牢性を改善するために、3Dゲーム(ARMA3)からの合成データセットを収集する。
提案したセグメンテーションモデルは,最先端セグメンテーション手法の性能を上回る。
論文 参考訳(メタデータ) (2023-10-31T12:37:49Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
生成モデルは、実世界のデータを置き換えたり拡張したりできる合成データセットを生成するための有望なソリューションとして登場した。
本稿では,合成データセットの品質と多様性を向上させるために,新しい3つのポストプロセッシング手法を提案する。
Gap Filler(GaFi)は、Fashion-MNIST、CIFAR-10、CIFAR-100データセットにおいて、実精度スコアとのギャップを2.03%、1.78%、および3.99%に効果的に減少させることを示した。
論文 参考訳(メタデータ) (2023-05-17T10:50:38Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
本稿では,フラットな軌道を求める最適化アルゴリズムを提案する。
合成データに基づいてトレーニングされた重みは、平坦な軌道への正規化を伴う累積誤差摂動に対して頑健であることを示す。
本手法はFTD (Flat Trajectory Distillation) と呼ばれ, 勾配整合法の性能を最大4.7%向上させる。
論文 参考訳(メタデータ) (2022-11-20T15:49:11Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
我々は、数値コードをより安価でプロジェクションベースのサロゲートモデルに置き換えている。
このモデルは、数値的な方法で必要となるすべての前の電場を計算することなく、所定の時間で電場を近似することができる。
このモデルでは, シミュレーションパラメータの狭い範囲におけるデータの摂動問題において, 高品質な再構成が示されており, 大規模な入力データに利用することができる。
論文 参考訳(メタデータ) (2021-06-01T08:46:04Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
本稿では,3次元密度(深度,表面正規度)情報を表現操作に用いる新しいフレームワークを提案する。
既製の最先端3D再構成モデルを用いて深度を推定し,大規模RGB-Depthデータセットを作成する。
実験により,提案手法は競争ベースラインと既存の芸術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-09-30T17:12:35Z) - Exploring the Impacts from Datasets to Monocular Depth Estimation (MDE)
Models with MineNavi [5.689127984415125]
ディープラーニングに基づく現在のコンピュータビジョンタスクは、モデルトレーニングやテストのためのアノテーションを備えた大量のデータを必要とする。
実際には、高密度推定タスクのための手動ラベリングは非常に困難または不可能であり、データセットのシーンは小さな範囲に制限されることが多い。
本稿では,手作業の負担を伴わない拡張可能なデータセットを得るための合成データセット生成手法を提案する。
論文 参考訳(メタデータ) (2020-08-19T14:03:17Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
大規模なデータセットは、ディープニューラルネットワークの改善、ターゲットトレーニングに使用することができる。
特に,100の合成IDからなるデータセットにまたがる複数の2次元画像のレンダリングに3次元形態素顔モデルを用いる。
論文 参考訳(メタデータ) (2020-06-21T10:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。