Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation
- URL: http://arxiv.org/abs/2405.01113v1
- Date: Thu, 2 May 2024 09:21:10 GMT
- Title: Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation
- Authors: Seungyeop Lee, Knut Peterson, Solmaz Arezoomandan, Bill Cai, Peihan Li, Lifeng Zhou, David Han,
- Abstract summary: We propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer.
We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data.
We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
- Score: 9.812476193015488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major obstacle to the development of effective monocular depth estimation algorithms is the difficulty in obtaining high-quality depth data that corresponds to collected RGB images. Collecting this data is time-consuming and costly, and even data collected by modern sensors has limited range or resolution, and is subject to inconsistencies and noise. To combat this, we propose a method of data generation in simulation using 3D synthetic environments and CycleGAN domain transfer. We compare this method of data generation to the popular NYUDepth V2 dataset by training a depth estimation model based on the DenseDepth structure using different training sets of real and simulated data. We evaluate the performance of the models on newly collected images and LiDAR depth data from a Husky robot to verify the generalizability of the approach and show that GAN-transformed data can serve as an effective alternative to real-world data, particularly in depth estimation.
Related papers
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Thermal-Infrared Remote Target Detection System for Maritime Rescue
based on Data Augmentation with 3D Synthetic Data [4.66313002591741]
This paper proposes a thermal-infrared (TIR) remote target detection system for maritime rescue using deep learning and data augmentation.
To address dataset scarcity and improve model robustness, a synthetic dataset from a 3D game (ARMA3) to augment the data is collected.
The proposed segmentation model surpasses the performance of state-of-the-art segmentation methods.
arXiv Detail & Related papers (2023-10-31T12:37:49Z) - Bridging the Gap: Enhancing the Utility of Synthetic Data via
Post-Processing Techniques [7.967995669387532]
generative models have emerged as a promising solution for generating synthetic datasets that can replace or augment real-world data.
We propose three novel post-processing techniques to improve the quality and diversity of the synthetic dataset.
Experiments show that Gap Filler (GaFi) effectively reduces the gap with real-accuracy scores to an error of 2.03%, 1.78%, and 3.99% on the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, respectively.
arXiv Detail & Related papers (2023-05-17T10:50:38Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
Deep learning in computer vision has achieved great success with the price of large-scale labeled training data.
The uncontrollable data collection process produces non-IID training and test data, where undesired duplication may exist.
To circumvent them, an alternative is to generate synthetic data via 3D rendering with domain randomization.
arXiv Detail & Related papers (2023-03-16T09:03:52Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - Data-Driven Shadowgraph Simulation of a 3D Object [50.591267188664666]
We are replacing the numerical code by a computationally cheaper projection based surrogate model.
The model is able to approximate the electric fields at a given time without computing all preceding electric fields as required by numerical methods.
This model has shown a good quality reconstruction in a problem of perturbation of data within a narrow range of simulation parameters and can be used for input data of large size.
arXiv Detail & Related papers (2021-06-01T08:46:04Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - 3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial
Learning [54.24887282693925]
We propose a novel framework to exploit 3D dense (depth and surface normals) information for expression manipulation.
We use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset.
Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.
arXiv Detail & Related papers (2020-09-30T17:12:35Z) - Exploring the Impacts from Datasets to Monocular Depth Estimation (MDE)
Models with MineNavi [5.689127984415125]
Current computer vision tasks based on deep learning require a huge amount of data with annotations for model training or testing.
In practice, manual labeling for dense estimation tasks is very difficult or even impossible, and the scenes of the dataset are often restricted to a small range.
We propose a synthetic dataset generation method to obtain the expandable dataset without burdensome manual workforce.
arXiv Detail & Related papers (2020-08-19T14:03:17Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
Large datasets can be used for improved, targeted training of deep neural networks.
In particular, we make use of a 3D morphable face model for the rendering of multiple 2D images across a dataset of 100 synthetic identities.
arXiv Detail & Related papers (2020-06-21T10:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.