Quantum solvability of quadratic Li'enard type nonlinear oscillators
possessing maximal Lie point symmetries: An implication of arbitrariness of
ordering parameters
- URL: http://arxiv.org/abs/2106.01882v1
- Date: Thu, 3 Jun 2021 14:27:20 GMT
- Title: Quantum solvability of quadratic Li'enard type nonlinear oscillators
possessing maximal Lie point symmetries: An implication of arbitrariness of
ordering parameters
- Authors: V. Chithiika Ruby and M. Lakshmanan
- Abstract summary: Two one-dimensional quadratic Li'enard type nonlinear oscillators are classified under the category of maximal (eight parameter) Lie point symmetry group.
Classically, both the systems were also shown to be linearizable as well as isochronic.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the quantum dynamics of underlying two
one-dimensional quadratic Li'enard type nonlinear oscillators which are
classified under the category of maximal (eight parameter) Lie point symmetry
group (J. Math. Phys.54 , 053506 (2013)). Classically, both the systems were
also shown to be linearizable as well as isochronic. In this work, we study the
quantum dynamics of the nonlinear oscillators by considering a general ordered
position dependent mass Hamiltonian. The ordering parameters of the mass term
are treated to be arbitrary to start with. We observe that the quantum version
of these nonlinear oscillators are exactly solvable provided that the ordering
parameters of the mass term are subjected to certain constraints imposed on the
arbitrariness of the ordering parameters. We obtain the eigenvalues and
eigenfunctions associated with both the systems. We also consider briefly the
quantum versions of other examples of quadratic Li'enard oscillators which are
classically linearizable.
Related papers
- Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Solving the homogeneous Bethe-Salpeter equation with a quantum annealer [34.173566188833156]
The homogeneous Bethe-Salpeter equation (hBSE) was solved for the first time by using a D-Wave quantum annealer.
A broad numerical analysis of the proposed algorithms was carried out using both the proprietary simulated-anneaing package and the D-Wave Advantage 4.1 system.
arXiv Detail & Related papers (2024-06-26T18:12:53Z) - Geometric Interpretation of a nonlinear extension of Quantum Mechanics [0.0]
We show that the non-linear terms can be viewed as giving rise to gravitational effects.
We suggest that the two components of the wave function represent the system described by the Hamiltonian H in two different regions of spacetime.
arXiv Detail & Related papers (2024-05-12T14:01:31Z) - LiƩnard Type Nonlinear Oscillators and Quantum Solvability [0.0]
Li'enard-type nonlinear oscillators with linear and nonlinear damping terms exhibit diverse dynamical behavior in both the classical and quantum regimes.
The modified Emden equation categorized as Li'enard type-II exhibits isochronous oscillations at the classical level.
The study on the quantum counterpart of the system provides a deeper understanding of the behavior in the quantum realm as a typical PT-symmetric system.
arXiv Detail & Related papers (2024-05-02T11:26:52Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Quantum solvability of a nonlinear $\delta$-type mass profile system:
Coupling constant quantization [1.3907460999698045]
We consider a general ordered position-dependent mass Hamiltonian in which the ordering parameters of the mass term are treated as arbitrary.
We observe that the quantum system admits bounded solutions but importantly the coupling parameter of the system gets quantized.
arXiv Detail & Related papers (2022-07-29T08:21:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - On the classical and quantum dynamics of a class of nonpolynomial
oscillators [0.0]
We consider two one dimensional nonlinear oscillators, namely (i) Higgs oscillator and (ii) a $k$-dependent nonpolynomial rational potential.
We observe that the quantum version of the Higgs oscillator is exactly solvable under appropriate restrictions of the ordering parameters.
The three dimensional generalization of the quantum counterpart of the $k$-dependent nonpolynomial potential is found out to be quasi exactly solvable.
arXiv Detail & Related papers (2020-08-17T07:52:37Z) - Bistability in the dissipative quantum systems I: Damped and driven
nonlinear oscillator [0.0]
We revisit quantum dynamics of the damped and driven nonlinear oscillator.
In the classical case this system has two stationary solutions (the limit cycles) in the certain parameter region, which is the origin of the celebrated bistability phenomenon.
arXiv Detail & Related papers (2020-02-26T09:24:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.