Continuously evolving rewards in an open-ended environment
- URL: http://arxiv.org/abs/2405.01261v1
- Date: Thu, 2 May 2024 13:07:56 GMT
- Title: Continuously evolving rewards in an open-ended environment
- Authors: Richard M. Bailey,
- Abstract summary: RULE: Reward Updating through Learning and Expectation is tested in a simplified ecosystem-like setting.
The population of entities successfully demonstrate the abandonment of an initially rewarded but ultimately detrimental behaviour.
These adjustment happen through endogenous modification of the entities' underlying reward function, during continuous learning, without external intervention.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unambiguous identification of the rewards driving behaviours of entities operating in complex open-ended real-world environments is difficult, partly because goals and associated behaviours emerge endogenously and are dynamically updated as environments change. Reproducing such dynamics in models would be useful in many domains, particularly where fixed reward functions limit the adaptive capabilities of agents. Simulation experiments described assess a candidate algorithm for the dynamic updating of rewards, RULE: Reward Updating through Learning and Expectation. The approach is tested in a simplified ecosystem-like setting where experiments challenge entities' survival, calling for significant behavioural change. The population of entities successfully demonstrate the abandonment of an initially rewarded but ultimately detrimental behaviour, amplification of beneficial behaviour, and appropriate responses to novel items added to their environment. These adjustment happen through endogenous modification of the entities' underlying reward function, during continuous learning, without external intervention.
Related papers
- Variable-Agnostic Causal Exploration for Reinforcement Learning [56.52768265734155]
We introduce a novel framework, Variable-Agnostic Causal Exploration for Reinforcement Learning (VACERL)
Our approach automatically identifies crucial observation-action steps associated with key variables using attention mechanisms.
It constructs the causal graph connecting these steps, which guides the agent towards observation-action pairs with greater causal influence on task completion.
arXiv Detail & Related papers (2024-07-17T09:45:27Z) - A Behavior-Aware Approach for Deep Reinforcement Learning in Non-stationary Environments without Known Change Points [30.077746056549678]
This research introduces Behavior-Aware Detection and Adaptation (BADA), an innovative framework that merges environmental change detection with behavior adaptation.
The key inspiration behind our method is that policies exhibit different global behaviors in changing environments.
The results of a series of experiments demonstrate better performance relative to several current algorithms.
arXiv Detail & Related papers (2024-05-23T06:17:26Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - Self-supervised network distillation: an effective approach to exploration in sparse reward environments [0.0]
Reinforcement learning can train an agent to behave in an environment according to a predesigned reward function.
The solution to such a problem may be to equip the agent with an intrinsic motivation that will provide informed exploration.
We present Self-supervised Network Distillation (SND), a class of intrinsic motivation algorithms based on the distillation error as a novelty indicator.
arXiv Detail & Related papers (2023-02-22T18:58:09Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
We argue that a compact and general learning objective is to minimize the entropy of the agent's state visitation estimated using a latent state-space model.
This objective induces an agent to both gather information about its environment, corresponding to reducing uncertainty, and to gain control over its environment, corresponding to reducing the unpredictability of future world states.
arXiv Detail & Related papers (2021-12-07T18:50:42Z) - Online reinforcement learning with sparse rewards through an active
inference capsule [62.997667081978825]
This paper introduces an active inference agent which minimizes the novel free energy of the expected future.
Our model is capable of solving sparse-reward problems with a very high sample efficiency.
We also introduce a novel method for approximating the prior model from the reward function, which simplifies the expression of complex objectives.
arXiv Detail & Related papers (2021-06-04T10:03:36Z) - Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning [12.76337275628074]
In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality andgenerativeity.
We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration.
Our method outperforms several state-of-the-art environment model-based exploration approaches.
arXiv Detail & Related papers (2020-10-17T09:54:51Z) - Environment Shaping in Reinforcement Learning using State Abstraction [63.444831173608605]
We propose a novel framework of emphenvironment shaping using state abstraction.
Our key idea is to compress the environment's large state space with noisy signals to an abstracted space.
We show that the agent's policy learnt in the shaped environment preserves near-optimal behavior in the original environment.
arXiv Detail & Related papers (2020-06-23T17:00:22Z) - Ecological Reinforcement Learning [76.9893572776141]
We study the kinds of environment properties that can make learning under such conditions easier.
understanding how properties of the environment impact the performance of reinforcement learning agents can help us to structure our tasks in ways that make learning tractable.
arXiv Detail & Related papers (2020-06-22T17:55:03Z) - RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated
Environments [15.736899098702972]
We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation.
We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid.
arXiv Detail & Related papers (2020-02-27T18:03:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.