論文の概要: StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation
- arxiv url: http://arxiv.org/abs/2405.01434v1
- Date: Thu, 2 May 2024 16:25:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 15:55:39.751268
- Title: StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation
- Title(参考訳): StoryDiffusion:ロングランジ画像とビデオ生成のための一貫性のある自己認識
- Authors: Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, Qibin Hou,
- Abstract要約: 本稿では,一貫性自己注意という新たな自己注意計算手法を提案する。
提案手法を長距離ビデオ生成に拡張するために,新しい意味空間時間運動予測モジュールを導入する。
これら2つの新しいコンポーネントを統合することで、StoryDiffusionと呼ばれるフレームワークは、一貫した画像やビデオでテキストベースのストーリーを記述することができます。
- 参考スコア(独自算出の注目度): 117.13475564834458
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: For recent diffusion-based generative models, maintaining consistent content across a series of generated images, especially those containing subjects and complex details, presents a significant challenge. In this paper, we propose a new way of self-attention calculation, termed Consistent Self-Attention, that significantly boosts the consistency between the generated images and augments prevalent pretrained diffusion-based text-to-image models in a zero-shot manner. To extend our method to long-range video generation, we further introduce a novel semantic space temporal motion prediction module, named Semantic Motion Predictor. It is trained to estimate the motion conditions between two provided images in the semantic spaces. This module converts the generated sequence of images into videos with smooth transitions and consistent subjects that are significantly more stable than the modules based on latent spaces only, especially in the context of long video generation. By merging these two novel components, our framework, referred to as StoryDiffusion, can describe a text-based story with consistent images or videos encompassing a rich variety of contents. The proposed StoryDiffusion encompasses pioneering explorations in visual story generation with the presentation of images and videos, which we hope could inspire more research from the aspect of architectural modifications. Our code is made publicly available at https://github.com/HVision-NKU/StoryDiffusion.
- Abstract(参考訳): 最近の拡散に基づく生成モデルでは、一連の生成した画像、特に被写体と複雑な詳細を含むコンテンツを一貫したコンテンツを維持することが大きな課題である。
本稿では,画像間の一貫性を著しく向上し,事前学習した拡散型画像のテキスト・ツー・イメージモデルをゼロショットで拡張する,一貫性自己注意計算法を提案する。
提案手法を長距離ビデオ生成に拡張するために,セマンティックモーション予測器という新しい意味空間時間的動き予測モジュールを導入する。
セマンティック空間内の2つの提供された画像間の運動条件を推定するように訓練されている。
このモジュールは、生成した画像列をスムーズな遷移と一貫した主題を持つビデオに変換する。
これら2つの新しいコンポーネントをマージすることで、StoryDiffusionと呼ばれるフレームワークは、多種多様なコンテンツを含む一貫した画像やビデオを含むテキストベースのストーリーを記述できる。
提案されたStoryDiffusionは、画像とビデオの提示による視覚的なストーリー生成の先駆的な探索を含んでいる。
私たちのコードはhttps://github.com/HVision-NKU/StoryDiffusion.comで公開されています。
関連論文リスト
- MovieDreamer: Hierarchical Generation for Coherent Long Visual Sequence [62.72540590546812]
MovieDreamerは、自己回帰モデルの強みと拡散ベースのレンダリングを統合する、新しい階層的なフレームワークである。
様々な映画ジャンルにまたがって実験を行い、そのアプローチが優れた視覚的・物語的品質を実現することを示す。
論文 参考訳(メタデータ) (2024-07-23T17:17:05Z) - LatentMan: Generating Consistent Animated Characters using Image Diffusion Models [44.18315132571804]
テキスト・ツー・イメージ(T2I)拡散モデルに基づいて,アニメキャラクターの一貫した映像を生成するゼロショット手法を提案する。
提案手法は,既存のゼロショットT2V手法より,ピクセルワイドの一貫性とユーザ嗜好の観点からアニメーションキャラクターのビデオ生成に優れる。
論文 参考訳(メタデータ) (2023-12-12T10:07:37Z) - MEVG: Multi-event Video Generation with Text-to-Video Models [18.06640097064693]
本稿では,ユーザから複数の個々の文が与えられた複数のイベントを示すビデオを生成する,拡散に基づく新しいビデオ生成手法を提案する。
本手法は, 微調整処理を伴わずに, 事前学習したテキスト・ビデオ生成モデルを使用するため, 大規模なビデオデータセットを必要としない。
提案手法は,コンテンツとセマンティクスの時間的コヒーレンシーの観点から,他のビデオ生成モデルよりも優れている。
論文 参考訳(メタデータ) (2023-12-07T06:53:25Z) - MoVideo: Motion-Aware Video Generation with Diffusion Models [97.03352319694795]
本稿では,映像深度と光フローの2つの側面から動きを考慮に入れたモーションアウェア・ジェネレーション(MoVideo)フレームワークを提案する。
MoVideoは、テキスト・トゥ・ビデオと画像・トゥ・ビデオ生成の両方で最先端の結果を達成し、期待できる即時一貫性、フレームの整合性、視覚的品質を示す。
論文 参考訳(メタデータ) (2023-11-19T13:36:03Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
本稿では、生成遷移と予測に焦点をあてた、短時間から長期のビデオ拡散モデルSEINEを提案する。
テキスト記述に基づく遷移を自動的に生成するランダムマスクビデオ拡散モデルを提案する。
我々のモデルは、コヒーレンスと視覚的品質を保証するトランジションビデオを生成する。
論文 参考訳(メタデータ) (2023-10-31T17:58:17Z) - Gen-L-Video: Multi-Text to Long Video Generation via Temporal
Co-Denoising [43.35391175319815]
本研究では,複数テキスト条件付き長編ビデオの生成と編集にテキスト駆動能力を拡張する可能性について検討する。
我々は,市販のビデオ拡散モデルの拡張が可能なGen-L-Videoという新しいパラダイムを導入する。
実験結果から,本手法は映像拡散モデルの生成・編集能力を著しく拡張することが明らかとなった。
論文 参考訳(メタデータ) (2023-05-29T17:38:18Z) - Multi-object Video Generation from Single Frame Layouts [84.55806837855846]
本研究では,グローバルシーンを局所オブジェクトに合成するビデオ生成フレームワークを提案する。
我々のフレームワークは、画像生成手法からの非自明な適応であり、この分野では新しくなっています。
本モデルは広範に使用されている2つのビデオ認識ベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-05-06T09:07:01Z) - Towards Smooth Video Composition [59.134911550142455]
ビデオ生成には、時間とともに動的コンテンツを伴う一貫した永続的なフレームが必要である。
本研究は, 生成的対向ネットワーク(GAN)を用いて, 任意の長さの映像を構成するための時間的関係を, 数フレームから無限までモデル化するものである。
単体画像生成のためのエイリアスフリー操作は、適切に学習された知識とともに、フレーム単位の品質を損なうことなく、スムーズなフレーム遷移をもたらすことを示す。
論文 参考訳(メタデータ) (2022-12-14T18:54:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。