論文の概要: MEVG: Multi-event Video Generation with Text-to-Video Models
- arxiv url: http://arxiv.org/abs/2312.04086v2
- Date: Tue, 16 Jul 2024 11:40:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 23:50:29.461458
- Title: MEVG: Multi-event Video Generation with Text-to-Video Models
- Title(参考訳): MEVG:テキスト・ツー・ビデオモデルによるマルチイベントビデオ生成
- Authors: Gyeongrok Oh, Jaehwan Jeong, Sieun Kim, Wonmin Byeon, Jinkyu Kim, Sungwoong Kim, Sangpil Kim,
- Abstract要約: 本稿では,ユーザから複数の個々の文が与えられた複数のイベントを示すビデオを生成する,拡散に基づく新しいビデオ生成手法を提案する。
本手法は, 微調整処理を伴わずに, 事前学習したテキスト・ビデオ生成モデルを使用するため, 大規模なビデオデータセットを必要としない。
提案手法は,コンテンツとセマンティクスの時間的コヒーレンシーの観点から,他のビデオ生成モデルよりも優れている。
- 参考スコア(独自算出の注目度): 18.06640097064693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce a novel diffusion-based video generation method, generating a video showing multiple events given multiple individual sentences from the user. Our method does not require a large-scale video dataset since our method uses a pre-trained diffusion-based text-to-video generative model without a fine-tuning process. Specifically, we propose a last frame-aware diffusion process to preserve visual coherence between consecutive videos where each video consists of different events by initializing the latent and simultaneously adjusting noise in the latent to enhance the motion dynamic in a generated video. Furthermore, we find that the iterative update of latent vectors by referring to all the preceding frames maintains the global appearance across the frames in a video clip. To handle dynamic text input for video generation, we utilize a novel prompt generator that transfers course text messages from the user into the multiple optimal prompts for the text-to-video diffusion model. Extensive experiments and user studies show that our proposed method is superior to other video-generative models in terms of temporal coherency of content and semantics. Video examples are available on our project page: https://kuai-lab.github.io/eccv2024mevg.
- Abstract(参考訳): 本稿では,ユーザから複数の個々の文が与えられた複数のイベントを示すビデオを生成する,拡散に基づく新しいビデオ生成手法を提案する。
提案手法は, 微調整処理を伴わずに, 事前学習した拡散型テキスト・ビデオ生成モデルを使用するため, 大規模なビデオデータセットを必要としない。
具体的には、各ビデオが異なるイベントで構成されている連続ビデオ間の視覚的コヒーレンスを維持するための最後のフレーム認識拡散プロセスを提案する。
さらに, 先行フレームを全て参照することで, ビデオクリップ内のフレーム全体のグローバルな外観を保ちながら, 遅延ベクトルの反復的な更新を行うことが判明した。
ビデオ生成のための動的テキスト入力を処理するために,ユーザからテキスト拡散モデルのための複数の最適プロンプトにコーステキストメッセージを転送する新しいプロンプト生成器を利用する。
広汎な実験とユーザスタディにより,提案手法はコンテンツとセマンティクスの時間的コヒーレンシーの観点から,他のビデオ生成モデルよりも優れていることが示された。
ビデオ例はプロジェクトのページで公開されている。
関連論文リスト
- StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation [117.13475564834458]
本稿では,一貫性自己注意という新たな自己注意計算手法を提案する。
提案手法を長距離ビデオ生成に拡張するために,新しい意味空間時間運動予測モジュールを導入する。
これら2つの新しいコンポーネントを統合することで、StoryDiffusionと呼ばれるフレームワークは、一貫した画像やビデオでテキストベースのストーリーを記述することができます。
論文 参考訳(メタデータ) (2024-05-02T16:25:16Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - SEINE: Short-to-Long Video Diffusion Model for Generative Transition and
Prediction [93.26613503521664]
本稿では、生成遷移と予測に焦点をあてた、短時間から長期のビデオ拡散モデルSEINEを提案する。
テキスト記述に基づく遷移を自動的に生成するランダムマスクビデオ拡散モデルを提案する。
我々のモデルは、コヒーレンスと視覚的品質を保証するトランジションビデオを生成する。
論文 参考訳(メタデータ) (2023-10-31T17:58:17Z) - Reuse and Diffuse: Iterative Denoising for Text-to-Video Generation [92.55296042611886]
リユースとディフューズ”と呼ばれるフレームワークを$textitVidRD$と名づけて提案する。
また、既存の複数のデータセットからの多様なコンテンツを含むビデオテキストデータを構成するための一連の戦略を提案する。
論文 参考訳(メタデータ) (2023-09-07T08:12:58Z) - VideoGen: A Reference-Guided Latent Diffusion Approach for High
Definition Text-to-Video Generation [73.54366331493007]
VideoGenはテキスト・ツー・ビデオ生成方式であり、フレームの忠実度が高く、時間的一貫性の強い高精細なビデオを生成することができる。
我々は,テキストプロンプトから高品質な画像を生成するために,既製のテキスト画像生成モデル,例えば,安定拡散(Stable Diffusion)を利用する。
論文 参考訳(メタデータ) (2023-09-01T11:14:43Z) - Gen-L-Video: Multi-Text to Long Video Generation via Temporal
Co-Denoising [43.35391175319815]
本研究では,複数テキスト条件付き長編ビデオの生成と編集にテキスト駆動能力を拡張する可能性について検討する。
我々は,市販のビデオ拡散モデルの拡張が可能なGen-L-Videoという新しいパラダイムを導入する。
実験結果から,本手法は映像拡散モデルの生成・編集能力を著しく拡張することが明らかとなった。
論文 参考訳(メタデータ) (2023-05-29T17:38:18Z) - Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style
Transfer [13.098901971644656]
本稿では,Style-A-Video というゼロショットビデオスタイリング手法を提案する。
画像遅延拡散モデルを用いた生成事前学習型トランスフォーマーを用いて、簡潔なテキスト制御ビデオスタイリングを実現する。
テストの結果,従来のソリューションよりも少ない使用量で,優れたコンテンツ保存とスタイリスティックな性能が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-09T14:03:27Z) - Show Me What and Tell Me How: Video Synthesis via Multimodal
Conditioning [36.85533835408882]
本研究は,テキストと画像を共同あるいは別々に提供するマルチモーダルビデオ生成フレームワークを提案する。
本稿では,自己学習で訓練した新しいビデオトークンと,ビデオトークンをサンプリングするためのマスク予測アルゴリズムを提案する。
我々のフレームワークは、セグメンテーションマスク、描画、部分閉塞画像など、様々な視覚的モダリティを組み込むことができる。
論文 参考訳(メタデータ) (2022-03-04T21:09:13Z) - End-to-end Generative Pretraining for Multimodal Video Captioning [82.79187814057313]
本稿では,未学習ビデオから学習するための新しい事前学習フレームワークであるMV-GPTを提案する。
最近のビデオ言語事前学習フレームワークとは異なり、我々のフレームワークはマルチモーダルビデオエンコーダと文デコーダを共同で訓練する。
本モデルは,4つの標準ベンチマークによるマルチモーダルビデオキャプションの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-01-20T16:16:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。