Closed-form congestion control via deep symbolic regression
- URL: http://arxiv.org/abs/2405.01435v1
- Date: Thu, 28 Mar 2024 14:31:37 GMT
- Title: Closed-form congestion control via deep symbolic regression
- Authors: Jean Martins, Igor Almeida, Ricardo Souza, Silvia Lins,
- Abstract summary: Reinforcement Learning (RL) algorithms can handle challenges in ultra-low-latency and high throughput scenarios.
The adoption of neural network models in real deployments still poses some challenges regarding real-time inference and interpretability.
This paper proposes a methodology to deal with such challenges while maintaining the performance and generalization capabilities.
- Score: 1.5961908901525192
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As mobile networks embrace the 5G era, the interest in adopting Reinforcement Learning (RL) algorithms to handle challenges in ultra-low-latency and high throughput scenarios increases. Simultaneously, the advent of packetized fronthaul networks imposes demanding requirements that traditional congestion control mechanisms cannot accomplish, highlighting the potential of RL-based congestion control algorithms. Although learning RL policies optimized for satisfying the stringent fronthaul requirements is feasible, the adoption of neural network models in real deployments still poses some challenges regarding real-time inference and interpretability. This paper proposes a methodology to deal with such challenges while maintaining the performance and generalization capabilities provided by a baseline RL policy. The method consists of (1) training a congestion control policy specialized in fronthaul-like networks via reinforcement learning, (2) collecting state-action experiences from the baseline, and (3) performing deep symbolic regression on the collected dataset. The proposed process overcomes the challenges related to inference-time limitations through closed-form expressions that approximate the baseline performance (link utilization, delay, and fairness) and which can be directly implemented in any programming language. Finally, we analyze the inner workings of the closed-form expressions.
Related papers
- Differentiable Discrete Event Simulation for Queuing Network Control [7.965453961211742]
Queueing network control poses distinct challenges, including highity, large state and action spaces, and lack of stability.
We propose a scalable framework for policy optimization based on differentiable discrete event simulation.
Our methods can flexibly handle realistic scenarios, including systems operating in non-stationary environments.
arXiv Detail & Related papers (2024-09-05T17:53:54Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality.
We propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO)
Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions.
We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions.
arXiv Detail & Related papers (2024-05-25T10:45:46Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
We study the robustness of deep reinforcement-learning (RL) approaches to control traffic signals.
We show that recent methods remain brittle in the face of missing data.
We propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble.
arXiv Detail & Related papers (2023-06-02T21:30:44Z) - Differentiated Federated Reinforcement Learning Based Traffic Offloading on Space-Air-Ground Integrated Networks [12.080548048901374]
This paper proposes the use of differentiated federated reinforcement learning (DFRL) to solve the traffic offloading problem in SAGIN.
Considering the differentiated characteristics of each region of SAGIN, DFRL models the traffic offloading policy optimization process.
The paper proposes a novel Differentiated Federated Soft Actor-Critic (DFSAC) algorithm to solve the problem.
arXiv Detail & Related papers (2022-12-05T07:40:29Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Reinforcement learning for Admission Control in 5G Wireless Networks [3.2345600015792564]
Key challenge in admission control in wireless networks is to strike an optimal trade-off between the blocking probability for new requests and the dropping probability of ongoing requests.
We consider two approaches for solving the admission control problem: i) the typically adopted threshold policy and ii) our proposed policy relying on reinforcement learning with neural networks.
arXiv Detail & Related papers (2021-04-13T06:37:18Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.