Differentiated Federated Reinforcement Learning Based Traffic Offloading on Space-Air-Ground Integrated Networks
- URL: http://arxiv.org/abs/2212.02075v4
- Date: Thu, 18 Jul 2024 01:18:10 GMT
- Title: Differentiated Federated Reinforcement Learning Based Traffic Offloading on Space-Air-Ground Integrated Networks
- Authors: Yeguang Qin, Yilin Yang, Fengxiao Tang, Xin Yao, Ming Zhao, Nei Kato,
- Abstract summary: This paper proposes the use of differentiated federated reinforcement learning (DFRL) to solve the traffic offloading problem in SAGIN.
Considering the differentiated characteristics of each region of SAGIN, DFRL models the traffic offloading policy optimization process.
The paper proposes a novel Differentiated Federated Soft Actor-Critic (DFSAC) algorithm to solve the problem.
- Score: 12.080548048901374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Space-Air-Ground Integrated Network (SAGIN) plays a pivotal role as a comprehensive foundational network communication infrastructure, presenting opportunities for highly efficient global data transmission. Nonetheless, given SAGIN's unique characteristics as a dynamically heterogeneous network, conventional network optimization methodologies encounter challenges in satisfying the stringent requirements for network latency and stability inherent to data transmission within this network environment. Therefore, this paper proposes the use of differentiated federated reinforcement learning (DFRL) to solve the traffic offloading problem in SAGIN, i.e., using multiple agents to generate differentiated traffic offloading policies. Considering the differentiated characteristics of each region of SAGIN, DFRL models the traffic offloading policy optimization process as the process of solving the Decentralized Partially Observable Markov Decision Process (DEC-POMDP) problem. The paper proposes a novel Differentiated Federated Soft Actor-Critic (DFSAC) algorithm to solve the problem. The DFSAC algorithm takes the network packet delay as the joint reward value and introduces the global trend model as the joint target action-value function of each agent to guide the update of each agent's policy. The simulation results demonstrate that the traffic offloading policy based on the DFSAC algorithm achieves better performance in terms of network throughput, packet loss rate, and packet delay compared to the traditional federated reinforcement learning approach and other baseline approaches.
Related papers
- Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Closed-form congestion control via deep symbolic regression [1.5961908901525192]
Reinforcement Learning (RL) algorithms can handle challenges in ultra-low-latency and high throughput scenarios.
The adoption of neural network models in real deployments still poses some challenges regarding real-time inference and interpretability.
This paper proposes a methodology to deal with such challenges while maintaining the performance and generalization capabilities.
arXiv Detail & Related papers (2024-03-28T14:31:37Z) - Inter-Cell Network Slicing With Transfer Learning Empowered Multi-Agent
Deep Reinforcement Learning [6.523367518762879]
Network slicing enables operators to efficiently support diverse applications on a common physical infrastructure.
The ever-increasing densification of network deployment leads to complex and non-trivial inter-cell interference.
We develop a DIRP algorithm with multiple deep reinforcement learning (DRL) agents to cooperatively optimize resource partition in individual cells.
arXiv Detail & Related papers (2023-06-20T14:14:59Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Optimization of Image Transmission in a Cooperative Semantic
Communication Networks [68.2233384648671]
A semantic communication framework for image transmission is developed.
Servers cooperatively transmit images to a set of users utilizing semantic communication techniques.
A multimodal metric is proposed to measure the correlation between the extracted semantic information and the original image.
arXiv Detail & Related papers (2023-01-01T15:59:13Z) - Proactive Resilient Transmission and Scheduling Mechanisms for mmWave
Networks [29.17280879786624]
This paper aims to develop resilient transmission mechanisms to suitably distribute traffic across multiple paths in an arbitrary millimeter-wave (mmWave) network.
To achieve resilience to link failures, a state-of-the-art Soft Actor-Critic DRL, which adapts the information flow through the network, is investigated.
arXiv Detail & Related papers (2022-11-17T02:52:27Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
We propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme to meet asymmetric and heterogeneous traffic demands.
We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP)
In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm.
arXiv Detail & Related papers (2022-11-04T07:39:21Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
In this paper, we investigate how to learn policies that can automatically adjust the configuration parameters of every cell in the network in response to the changes in the user demand.
Our solution combines existent methods for offline learning and adapts them in a principled way to overcome crucial challenges arising in this context.
arXiv Detail & Related papers (2021-11-11T11:31:20Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
We develop a model-free and data-driven routing strategy by leveraging reinforcement learning (RL)
Considering the graph nature of the network topology, we design a multi-agent RL framework in combination with Graph Neural Network (GNN)
arXiv Detail & Related papers (2021-07-28T06:20:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.