Invariant Control Strategies for Active Flow Control using Graph Neural Networks
- URL: http://arxiv.org/abs/2503.22775v1
- Date: Fri, 28 Mar 2025 09:33:40 GMT
- Title: Invariant Control Strategies for Active Flow Control using Graph Neural Networks
- Authors: Marius Kurz, Rohan Kaushik, Marcel Blind, Patrick Kopper, Anna Schwarz, Felix Rodach, Andrea Beck,
- Abstract summary: We introduce graph neural networks (GNNs) as a promising architecture forReinforcement Learning (RL)-based flow control.<n>GNNs process unstructured, threedimensional flow data, preserving spatial relationships without the constraints of a Cartesian grid.<n>We show that GNN-based control policies achieve comparable performance to existing methods while benefiting from improved generalization properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning has gained traction for active flow control tasks, with initial applications exploring drag mitigation via flow field augmentation around a two-dimensional cylinder. RL has since been extended to more complex turbulent flows and has shown significant potential in learning complex control strategies. However, such applications remain computationally challenging due to its sample inefficiency and associated simulation costs. This fact is worsened by the lack of generalization capabilities of these trained policy networks, often being implicitly tied to the input configurations of their training conditions. In this work, we propose the use of graph neural networks to address this particular limitation, effectively increasing the range of applicability and getting more value out of the upfront RL training cost. GNNs can naturally process unstructured, threedimensional flow data, preserving spatial relationships without the constraints of a Cartesian grid. Additionally, they incorporate rotational, reflectional, and permutation invariance into the learned control policies, thus improving generalization and thereby removing the shortcomings of commonly used CNN or MLP architectures. To demonstrate the effectiveness of this approach, we revisit the well-established two-dimensional cylinder benchmark problem for active flow control. The RL training is implemented using Relexi, a high-performance RL framework, with flow simulations conducted in parallel using the high-order discontinuous Galerkin framework FLEXI. Our results show that GNN-based control policies achieve comparable performance to existing methods while benefiting from improved generalization properties. This work establishes GNNs as a promising architecture for RL-based flow control and highlights the capabilities of Relexi and FLEXI for large-scale RL applications in fluid dynamics.
Related papers
- SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning [49.83621156017321]
SimBa is an architecture designed to scale up parameters in deep RL by injecting a simplicity bias.
By scaling up parameters with SimBa, the sample efficiency of various deep RL algorithms-including off-policy, on-policy, and unsupervised methods-is consistently improved.
arXiv Detail & Related papers (2024-10-13T07:20:53Z) - Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality [0.7421845364041001]
This study advances deep-reinforcement-learning (DRL) methods for flow control.
We focus on integrating group-invariant networks and positional encoding into DRL architectures.
The proposed methods are verified using a case study of Rayleigh-B'enard convection.
arXiv Detail & Related papers (2024-07-25T07:24:41Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
In robotics applications, smooth control signals are commonly preferred to reduce system wear and energy efficiency.
In this work, we aim to bridge this performance gap by growing discrete action spaces from coarse to fine control resolution.
Our work indicates that an adaptive control resolution in combination with value decomposition yields simple critic-only algorithms that yield surprisingly strong performance on continuous control tasks.
arXiv Detail & Related papers (2024-04-05T17:58:37Z) - Closed-form congestion control via deep symbolic regression [1.5961908901525192]
Reinforcement Learning (RL) algorithms can handle challenges in ultra-low-latency and high throughput scenarios.
The adoption of neural network models in real deployments still poses some challenges regarding real-time inference and interpretability.
This paper proposes a methodology to deal with such challenges while maintaining the performance and generalization capabilities.
arXiv Detail & Related papers (2024-03-28T14:31:37Z) - SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning [5.59265003686955]
We introduce SINDy-RL, a framework for combining SINDy and deep reinforcement learning.
SINDy-RL achieves comparable performance to state-of-the-art DRL algorithms.
We demonstrate the effectiveness of our approaches on benchmark control environments and challenging fluids problems.
arXiv Detail & Related papers (2024-03-14T05:17:39Z) - Generative Flow Networks as Entropy-Regularized RL [4.857649518812728]
generative flow networks (GFlowNets) are a method of training a policy to sample compositional objects with proportional probabilities to a given reward via a sequence of actions.
We demonstrate how the task of learning a generative flow network can be efficiently as an entropy-regularized reinforcement learning problem.
Contrary to previously reported results, we show that entropic RL approaches can be competitive against established GFlowNet training methods.
arXiv Detail & Related papers (2023-10-19T17:31:40Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - FORLORN: A Framework for Comparing Offline Methods and Reinforcement
Learning for Optimization of RAN Parameters [0.0]
This paper introduces a new framework for benchmarking the performance of an RL agent in network environments simulated with ns-3.
Within this framework, we demonstrate that an RL agent without domain-specific knowledge can learn how to efficiently adjust Radio Access Network (RAN) parameters to match offline optimization in static scenarios.
arXiv Detail & Related papers (2022-09-08T12:58:09Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
We present a differentiable simulator and a new policy learning algorithm (SHAC)
Our algorithm alleviates problems with local minima through a smooth critic function.
We show substantial improvements in sample efficiency and wall-clock time over state-of-the-art RL and differentiable simulation-based algorithms.
arXiv Detail & Related papers (2022-04-14T17:46:26Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
Reinforcement learning (RL) in discrete action space is ubiquitous in real-world applications, but its complexity grows exponentially with the action-space dimension.
We construct a critic to estimate action-value functions, apply it on correlated actions, and combine these critic estimated action values to control the variance of gradient estimation.
These efforts result in a new discrete action on-policy RL algorithm that empirically outperforms related on-policy algorithms relying on variance control techniques.
arXiv Detail & Related papers (2020-02-10T04:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.