論文の概要: A Review of Reward Functions for Reinforcement Learning in the context of Autonomous Driving
- arxiv url: http://arxiv.org/abs/2405.01440v1
- Date: Fri, 12 Apr 2024 08:32:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-05 17:44:45.339183
- Title: A Review of Reward Functions for Reinforcement Learning in the context of Autonomous Driving
- Title(参考訳): 自律運転における強化学習のためのリワード機能の検討
- Authors: Ahmed Abouelazm, Jonas Michel, J. Marius Zoellner,
- Abstract要約: 強化学習は自動運転にとって重要なアプローチである。
報酬関数は、強化学習において、学習したスキル目標を確立し、エージェントを最適な政策へ導くために用いられる。
自律運転は、目的と異なる優先度の度合いで部分的に矛盾する複雑な領域であるため、適切な報酬関数を開発することは、根本的な課題である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning has emerged as an important approach for autonomous driving. A reward function is used in reinforcement learning to establish the learned skill objectives and guide the agent toward the optimal policy. Since autonomous driving is a complex domain with partly conflicting objectives with varying degrees of priority, developing a suitable reward function represents a fundamental challenge. This paper aims to highlight the gap in such function design by assessing different proposed formulations in the literature and dividing individual objectives into Safety, Comfort, Progress, and Traffic Rules compliance categories. Additionally, the limitations of the reviewed reward functions are discussed, such as objectives aggregation and indifference to driving context. Furthermore, the reward categories are frequently inadequately formulated and lack standardization. This paper concludes by proposing future research that potentially addresses the observed shortcomings in rewards, including a reward validation framework and structured rewards that are context-aware and able to resolve conflicts.
- Abstract(参考訳): 強化学習は自動運転にとって重要なアプローチである。
報酬関数は、強化学習において、学習したスキル目標を確立し、エージェントを最適な政策へ導くために用いられる。
自律運転は、目的と異なる優先度の度合いで部分的に矛盾する複雑な領域であるため、適切な報酬関数を開発することは、根本的な課題である。
本研究の目的は、文献における異なる定式化を評価し、個々の目的を安全・快適・進歩・交通規則に分類することで、そのような機能設計のギャップを浮き彫りにすることである。
さらに、目的集約や駆動コンテキストへの無関心など、レビューされた報酬関数の制限についても論じる。
さらに、報酬カテゴリーは、しばしば不十分に定式化され、標準化が欠如している。
本論文は,報酬評価の枠組みや,コンテクストを意識し,紛争を解決できる構造的報酬を含む,見いだされた報酬の欠点に対処する可能性のある今後の研究を提案することによって,結論を下す。
関連論文リスト
- Rethinking Inverse Reinforcement Learning: from Data Alignment to Task Alignment [7.477559660351106]
模倣学習(IL)アルゴリズムは、逆強化学習(IRL)を用いて、実演と整合した報酬関数を推論する。
本稿では,従来のデータアライメントよりもタスクアライメントを優先するIRLベースのILのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-31T07:08:14Z) - Informativeness of Reward Functions in Reinforcement Learning [34.40155383189179]
本稿では,情報的報酬関数を設計することで,エージェントの収束を高速化する問題について検討する。
現存する作品では、いくつかの異なる報酬デザインの定式化が検討されている。
本稿では,エージェントの現在の方針に適応し,特定の構造制約の下で最適化できる報奨情報量基準を提案する。
論文 参考訳(メタデータ) (2024-02-10T18:36:42Z) - Behavior Alignment via Reward Function Optimization [23.92721220310242]
設計者のドメイン知識と環境のプライマリ報酬を反映した補助報酬を統合する新しいフレームワークを導入する。
提案手法の有効性を,小型実験から高次元制御課題に至るまで,様々な課題に対して評価する。
論文 参考訳(メタデータ) (2023-10-29T13:45:07Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Learning Domain Adaptive Object Detection with Probabilistic Teacher [93.76128726257946]
確率的教師(PT)と呼ばれる,シンプルで効果的な枠組みを提案する。
PTは、段階的に進化する教師から未ラベルの目標データの不確実性を捉え、相互に有利な方法で生徒の学習を指導することを目的としている。
また,不確実性誘導型自己学習を促進するために,新しいエントロピー・フォカル・ロス(EFL)を提案する。
論文 参考訳(メタデータ) (2022-06-13T16:24:22Z) - Generative multitask learning mitigates target-causing confounding [61.21582323566118]
マルチタスク学習のための因果表現学習のためのシンプルでスケーラブルなアプローチを提案する。
改善は、目標を狙うが入力はしない、観測されていない共同ファウンダーを緩和することによる。
人の属性とタスクノミーのデータセットに対する我々の結果は、事前の確率シフトに対するロバストネスの概念的改善を反映している。
論文 参考訳(メタデータ) (2022-02-08T20:42:14Z) - Outcome-Driven Reinforcement Learning via Variational Inference [95.82770132618862]
我々は、報酬を最大化する問題ではなく、望ましい結果を達成するための行動を推測する問題として、強化学習に関する新たな視点について論じる。
結果として得られる結果指向推論の問題を解決するため, 定型的報酬関数を導出する新しい変分推論定式を制定する。
我々は,この手法が報酬機能の設計を不要とし,効果的なゴール指向行動へと導くことを実証的に示す。
論文 参考訳(メタデータ) (2021-04-20T18:16:21Z) - Learn Goal-Conditioned Policy with Intrinsic Motivation for Deep
Reinforcement Learning [9.014110264448371]
目的条件付き政策(GPIM)という新しい教師なし学習手法を提案する。
GPIMは抽象レベルポリシーと目標条件ポリシーの両方を共同で学習する。
提案したGPIM法の有効性と効率性を示す様々なロボットタスクの実験。
論文 参考訳(メタデータ) (2021-04-11T16:26:10Z) - Temporal-Logic-Based Reward Shaping for Continuing Learning Tasks [57.17673320237597]
継続タスクにおいて、平均回帰強化学習は、より一般的な割引報酬の定式化よりも適切な問題定式化である可能性がある。
本稿では,平均回帰学習のための最初の報酬形成フレームワークを提案する。
これは、標準的な仮定の下では、元の報酬関数の下での最適ポリシーを復元できることを証明している。
論文 参考訳(メタデータ) (2020-07-03T05:06:57Z) - Mutual Information-based State-Control for Intrinsically Motivated
Reinforcement Learning [102.05692309417047]
強化学習において、エージェントは、外部報酬信号を用いて一連の目標に到達することを学習する。
自然界では、知的生物は内部の駆動から学習し、外部の信号を必要としない。
目的状態と制御可能な状態の間の相互情報として本質的な目的を定式化する。
論文 参考訳(メタデータ) (2020-02-05T19:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。