論文の概要: "Sometimes You Just Gotta Risk It for the Biscuit": A Portrait of Student Risk-Taking
- arxiv url: http://arxiv.org/abs/2405.01477v3
- Date: Mon, 07 Oct 2024 22:42:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:28:46.120343
- Title: "Sometimes You Just Gotta Risk It for the Biscuit": A Portrait of Student Risk-Taking
- Title(参考訳): ビスケットでリスクを負うこともあります」 : 学生のリスクテイキングのポートレート
- Authors: Juho Leinonen, Paul Denny,
- Abstract要約: 本研究は,ソフトウェア技術者のリスクテイク行動に関する先行研究を部分的に再現することを目的としている。
学生は、リスクの高い選択肢と安全な選択肢のどちらを選択する必要があるコースプロジェクトの期限に間に合うという仮説的なシナリオを提示された。
これらの選択に影響を及ぼす可能性のある要因として、決定のフレーミング(潜在的な利得や損失)、プログラミングの楽しさ、プログラミングの難しさの認識、コースにおけるパフォーマンスなどについて検討した。
- 参考スコア(独自算出の注目度): 4.280736832561806
- License:
- Abstract: Understanding how individuals make decisions involving risk is a fundamental aspect of behavioral research. Despite the ubiquity of risk in various aspects of life, limited empirical work has explored student risk-taking behavior in computing education. This study aims to partially replicate prior research on risk-taking behavior in software engineers while focusing on students, shedding light on the factors that affect their risk-taking choices. In our work, students were presented with a hypothetical scenario related to meeting a course project deadline, where they had to choose between a risky option and a safer alternative. We examined several factors that might influence these choices, including the framing of the decision (as a potential gain or loss), students' enjoyment of programming, perceived difficulty of programming, and their performance in the course. Our findings reveal intriguing insights into student risk-taking behavior. Similar to software engineers in prior work, the framing of the decision significantly impacted the choices students made, with the loss framing leading to a higher likelihood for risky choices. Surprisingly, students displayed a greater inclination towards risk-taking compared to their professional counterparts in prior research. Furthermore, we observed that students' performance in the course and their enjoyment of programming had a subtle correlation with their risk-taking tendencies, with better-performing students and those who enjoyed programming being marginally more prone to taking risks. Notably, we did not find statistically significant correlations between perceived difficulty of programming and risk-taking behavior among students.
- Abstract(参考訳): 個人がどのようにリスクを含む意思決定を行うかを理解することは、行動研究の基本的な側面である。
生命の様々な側面におけるリスクの多様さにもかかわらず、実験的な限られた研究は、コンピュータ教育における学生のリスクテイク行動を探究してきた。
本研究は,学生のリスクテイク行動に関する先行研究を部分的に再現し,リスクテイク選択に影響を与える要因に光を当てることを目的としている。
本研究では,リスクの高い選択肢と安全な選択肢のどちらを選択するかを選択するために,コースプロジェクトの期限に間に合う仮説的なシナリオを提示した。
これらの選択に影響を及ぼす可能性のある要因として、決定のフレーミング(潜在的な利得や損失)、プログラミングの楽しさ、プログラミングの難しさの認識、コースにおけるパフォーマンスなどについて検討した。
その結果,学生のリスクテイク行動に対する興味深い洞察が得られた。
以前の作業におけるソフトウェアエンジニアと同様、決定のフレーミングは学生の選択に大きな影響を与え、損失フレーミングはリスクの高い選択の可能性が高かった。
意外なことに、学生は以前の研究に比べてリスクテイクの傾向が高かった。
さらに,学生の授業成績とプログラミングの楽しさはリスクテイク傾向と微妙な相関関係がみられた。
特に,プログラミングの難易度と学生のリスクテイク行動との間に統計的に有意な相関はみられなかった。
関連論文リスト
- Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - RiskBench: A Scenario-based Benchmark for Risk Identification [4.263035319815899]
この研究は、リスク識別、ダイナミックなトラフィック参加者と予期せぬイベントから生じるリスクを特定し分析するプロセスに焦点を当てている。
リスク識別のための大規模シナリオベースベンチマークである textbfRiskBench を紹介する。
我々は,(1)リスクの検出と発見,(2)リスクの予測,(3)意思決定の促進を行う10のアルゴリズムの能力を評価する。
論文 参考訳(メタデータ) (2023-12-04T06:21:22Z) - Risk-reducing design and operations toolkit: 90 strategies for managing
risk and uncertainty in decision problems [65.268245109828]
本稿では,このような戦略のカタログを開発し,それらのためのフレームワークを開発する。
高い不確実性のために難解であるように見える決定問題に対して、効率的な応答を提供する、と論じている。
次に、多目的最適化を用いた決定理論にそれらを組み込む枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-06T16:14:32Z) - Anticipatory Thinking Challenges in Open Worlds: Risk Management [7.820667552233988]
AIシステムが日々の生活の一部になるにつれ、彼らもリスクを管理し始めています。
低周波で高インパクトなリスクを識別し緩和する学習は、機械学習モデルをトレーニングするために必要な観察バイアスと相反する。
私たちのゴールは、オープンワールドと究極的には現実世界のリスクを管理するためにAIエージェントが必要とする予測思考を評価し改善するソリューションの研究を促進することです。
論文 参考訳(メタデータ) (2023-06-22T18:31:17Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
我々は、様々な利害リスク対策をレビューし、その特性についてコメントする。
我々は,探索と探索のトレードオフが現れる,後悔の最小化設定のためのアルゴリズムを検討する。
今後の研究の課題と肥大化についてコメントし、締めくくりに締めくくります。
論文 参考訳(メタデータ) (2022-05-12T02:20:34Z) - Who will dropout from university? Academic risk prediction based on
interpretable machine learning [0.0]
LightGBMモデルとShapley値の解釈可能な機械学習手法に基づいて,学術的リスクを予測する。
地域の観点からは、学術的リスクに影響する要因は人によって異なる。
論文 参考訳(メタデータ) (2021-12-02T09:43:31Z) - Risk Conditioned Neural Motion Planning [14.018786843419862]
リスクバウンド・モーション・プランニングは、安全クリティカルなタスクにとって重要な問題であるが難しい問題である。
本稿では,リスク評論家による計画の実行リスクを推定するために,ソフトアクター批評家モデルの拡張を提案する。
計算時間と計画品質の両面で,我々のモデルの利点を示す。
論文 参考訳(メタデータ) (2021-08-04T05:33:52Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
我々は、期待される性能とリスクのバランスをとるために、新しいポリシー勾配スタイルのロバスト最適化手法PG-BROILを導出する。
その結果,PG-BROILはリスクニュートラルからリスク・アバースまでの行動のファミリを創出できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-11T16:49:15Z) - Bounded Risk-Sensitive Markov Games: Forward Policy Design and Inverse
Reward Learning with Iterative Reasoning and Cumulative Prospect Theory [33.57592649823294]
本稿では,リスクに敏感なマルコフゲーム(BRSMG)とその逆報酬学習問題について検討する。
我々は,BRSMGにおいて,人間は知能を制限し,リスクに敏感なユーティリティを最大化することを示した。
その結果, エージェントの行動は, リスク・リバース特性とリスク・サーキング特性の両方を示すことがわかった。
論文 参考訳(メタデータ) (2020-09-03T07:32:32Z) - Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff
in Regret [115.85354306623368]
本研究では,未知の遷移カーネルを持つマルコフ決定過程におけるリスク感応性強化学習について検討する。
確率的に効率的なモデルレスアルゴリズムとして、リスク感性価値反復(RSVI)とリスク感性Q-ラーニング(RSQ)を提案する。
RSVIが $tildeObig(lambda(|beta| H2) cdot sqrtH3 S2AT big) に達したことを証明しています。
論文 参考訳(メタデータ) (2020-06-22T19:28:26Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。