Common pitfalls to avoid while using multiobjective optimization in machine learning
- URL: http://arxiv.org/abs/2405.01480v2
- Date: Tue, 29 Apr 2025 12:37:51 GMT
- Title: Common pitfalls to avoid while using multiobjective optimization in machine learning
- Authors: Junaid Akhter, Paul David Fährmann, Konstantin Sonntag, Sebastian Peitz, Daniel Schwietert,
- Abstract summary: There has been an increasing interest in the application of multiobjective optimization (MOO) in machine learning (ML)<n>Despite its potential, there is a noticeable lack of satisfactory literature serving as an entry-level guide for ML practitioners aiming to apply MOO effectively.<n>We critically review existing studies across various ML fields where MOO has been applied and identify challenges that can lead to incorrect interpretations.
- Score: 1.1650821883155187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been an increasing interest in the application of multiobjective optimization (MOO) in machine learning (ML). This interest is driven by the numerous real-life situations where multiple objectives must be optimized simultaneously. A key aspect of MOO is the existence of a Pareto set, rather than a single optimal solution, which represents the optimal trade-offs between different objectives. Despite its potential, there is a noticeable lack of satisfactory literature serving as an entry-level guide for ML practitioners aiming to apply MOO effectively. In this paper, our goal is to provide such a resource and highlight pitfalls to avoid. We begin by establishing the groundwork for MOO, focusing on well-known approaches such as the weighted sum (WS) method, alongside more advanced techniques like the multiobjective gradient descent algorithm (MGDA). We critically review existing studies across various ML fields where MOO has been applied and identify challenges that can lead to incorrect interpretations. One of these fields is physics informed neural networks (PINNs), which we use as a guiding example to carefully construct experiments illustrating these pitfalls. By comparing WS and MGDA with one of the most common evolutionary algorithms, NSGA-II, we demonstrate that difficulties can arise regardless of the specific MOO method used. We emphasize the importance of understanding the specific problem, the objective space, and the selected MOO method, while also noting that neglecting factors such as convergence criteria can result in misleading experiments.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Many-Objective Evolutionary Influence Maximization: Balancing Spread, Budget, Fairness, and Time [3.195234044113248]
The Influence Maximization (IM) problem seeks to discover the set of nodes in a graph that can spread the information propagation at most.
This problem is known to be NP-hard, and it is usually studied by maximizing the influence (spread) and,Alternatively, optimizing a second objective.
In this work, we propose a first case study where several IM-specific objective functions, namely budget fairness, communities, and time, are optimized on top of influence and minimization of the seed set size.
arXiv Detail & Related papers (2024-03-27T16:54:45Z) - Structured Pruning of Neural Networks for Constraints Learning [5.689013857168641]
We show the effectiveness of pruning, one of these techniques, when applied to ANNs prior to their integration into MIPs.
We conduct experiments using feed-forward neural networks with multiple layers to construct adversarial examples.
Our results demonstrate that pruning offers remarkable reductions in solution times without hindering the quality of the final decision.
arXiv Detail & Related papers (2023-07-14T16:36:49Z) - Three-Way Trade-Off in Multi-Objective Learning: Optimization,
Generalization and Conflict-Avoidance [47.42067405054353]
Multi-objective learning (MOL) problems often arise in emerging machine learning problems.
One of the critical challenges in MOL is the potential conflict among different objectives during the iterative optimization process.
Recent works have developed various dynamic weighting algorithms for MOL such as MGDA and its variants.
arXiv Detail & Related papers (2023-05-31T17:31:56Z) - Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview [10.081056751778712]
We introduce the basics of multi-objective hyperparameter optimization and motivate its usefulness in applied ML.
We provide an extensive survey of existing optimization strategies, both from the domain of evolutionary algorithms and Bayesian optimization.
We illustrate the utility of MOO in several specific ML applications, considering objectives such as operating conditions, prediction time, sparseness, fairness, interpretability and robustness.
arXiv Detail & Related papers (2022-06-15T10:23:19Z) - Multi-Task Learning on Networks [0.0]
Multi-objective optimization problems arising in the multi-task learning context have specific features and require adhoc methods.
In this thesis the solutions in the Input Space are represented as probability distributions encapsulating the knowledge contained in the function evaluations.
In this space of probability distributions, endowed with the metric given by the Wasserstein distance, a new algorithm MOEA/WST can be designed in which the model is not directly on the objective function.
arXiv Detail & Related papers (2021-12-07T09:13:10Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
Model-agnostic meta-learning (MAML) is one of the most popular and widely-adopted meta-learning algorithms nowadays.
We provide a new perspective to the working mechanism of MAML and discover that: MAML is analogous to a meta-learner using a supervised contrastive objective function.
We propose a simple but effective technique, zeroing trick, to alleviate such interference.
arXiv Detail & Related papers (2021-06-29T12:52:26Z) - Niching Diversity Estimation for Multi-modal Multi-objective
Optimization [9.584279193016522]
Niching is an important and widely used technique in evolutionary multi-objective optimization.
In MMOPs, a solution in the objective space may have multiple inverse images in the decision space, which are termed as equivalent solutions.
A general niching mechanism is proposed to make standard diversity estimators more efficient when handling MMOPs.
arXiv Detail & Related papers (2021-01-31T05:23:31Z) - On the Treatment of Optimization Problems with L1 Penalty Terms via
Multiobjective Continuation [0.0]
We present a novel algorithm that allows us to gain detailed insight into the effects of sparsity in linear and nonlinear optimization.
Our method can be seen as a generalization of well-known homotopy methods for linear regression problems to the nonlinear case.
arXiv Detail & Related papers (2020-12-14T13:00:50Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Empirical Study on the Benefits of Multiobjectivization for Solving
Single-Objective Problems [0.0]
Local optima are often preventing algorithms from making progress and thus pose a severe threat.
With the use of a sophisticated visualization technique based on the multi-objective gradients, the properties of the arising multi-objective landscapes are illustrated and examined.
We will empirically show that the multi-objective COCO MOGSA is able to exploit these properties to overcome local traps.
arXiv Detail & Related papers (2020-06-25T14:04:37Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
Model-a meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior.
We characterize optimality of the stationary points attained by MAML for both learning and supervised learning, where the inner-level outer-level problems are solved via first-order optimization methods.
arXiv Detail & Related papers (2020-06-23T17:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.