論文の概要: Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.01494v1
- Date: Thu, 2 May 2024 17:26:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 15:35:38.226730
- Title: Navigating Heterogeneity and Privacy in One-Shot Federated Learning with Diffusion Models
- Title(参考訳): 拡散モデルを用いたワンショットフェデレーション学習における不均一性とプライバシの探索
- Authors: Matias Mendieta, Guangyu Sun, Chen Chen,
- Abstract要約: フェデレートラーニング(FL)は、複数のクライアントがデータのプライバシを保持しながらモデルをまとめてトレーニングすることを可能にする。
ワンショットフェデレーション学習は、コミュニケーションラウンドの削減、効率の向上、盗聴攻撃に対するセキュリティ向上によるソリューションとして登場した。
- 参考スコア(独自算出の注目度): 6.921070916461661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables multiple clients to train models collectively while preserving data privacy. However, FL faces challenges in terms of communication cost and data heterogeneity. One-shot federated learning has emerged as a solution by reducing communication rounds, improving efficiency, and providing better security against eavesdropping attacks. Nevertheless, data heterogeneity remains a significant challenge, impacting performance. This work explores the effectiveness of diffusion models in one-shot FL, demonstrating their applicability in addressing data heterogeneity and improving FL performance. Additionally, we investigate the utility of our diffusion model approach, FedDiff, compared to other one-shot FL methods under differential privacy (DP). Furthermore, to improve generated sample quality under DP settings, we propose a pragmatic Fourier Magnitude Filtering (FMF) method, enhancing the effectiveness of generated data for global model training.
- Abstract(参考訳): フェデレートラーニング(FL)は、複数のクライアントがデータのプライバシを保持しながらモデルをまとめてトレーニングすることを可能にする。
しかし、FLは通信コストとデータ不均一性の点で課題に直面している。
ワンショットフェデレーション学習は、コミュニケーションラウンドの削減、効率の向上、盗聴攻撃に対するセキュリティ向上によるソリューションとして登場した。
それでも、データの異質性は大きな課題であり、パフォーマンスに影響を与えます。
本研究では,単発FLにおける拡散モデルの有効性について検討し,データの不均一性に対処し,FL性能を向上させるための適用性を示す。
さらに,拡散モデルアプローチであるFedDiffの有用性を,差分プライバシ(DP)下での他のワンショットFL法と比較して検討した。
さらに,DP設定下で生成したサンプルの品質を向上させるために,大域的モデルトレーニングにおける生成データの有効性を高めるために,実用的フーリエ・マグニチュード・フィルタリング(FMF)手法を提案する。
関連論文リスト
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - Data-Free Federated Class Incremental Learning with Diffusion-Based Generative Memory [27.651921957220004]
拡散型生成メモリ(DFedDGM)を用いた新しいデータフリーフェデレーションクラスインクリメンタルラーニングフレームワークを提案する。
FLにおける一般の非IID問題を軽減するために拡散モデルの訓練を支援するために,新しいバランスの取れたサンプルを設計する。
また、情報理論の観点からエントロピーに基づくサンプルフィルタリング手法を導入し、生成サンプルの品質を向上させる。
論文 参考訳(メタデータ) (2024-05-22T20:59:18Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH (Federated Learning Across Simultaneous Heterogeneities) は軽量かつ柔軟なクライアント選択アルゴリズムである。
ヘテロジニティの幅広い情報源の下で、最先端のFLフレームワークよりも優れています。
最先端のベースラインよりも大幅に、一貫性のある改善を実現している。
論文 参考訳(メタデータ) (2024-02-13T20:04:39Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
フェデレーション学習(FL)は、中央サーバでデータを収集することなく、エッジデバイス上でニューラルネットワークをトレーニングする。
本稿では,局所モデル以外の補助データを共有するハード特徴マッチングデータ合成(HFMDS)手法を提案する。
プライバシーの保存性を向上するため,本研究では,実際の特徴を決定境界に向けて伝達する機能拡張手法を提案する。
論文 参考訳(メタデータ) (2023-08-09T07:49:39Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
大規模な集中型データセットで生成モデルをトレーニングすることで、データのプライバシやセキュリティ、アクセシビリティといった面での課題が発生する可能性がある。
本稿では,フェデレートラーニング(FL)技術を用いて,複数のデータソースにまたがる拡散確率モデル(DDPM)の学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T01:43:09Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Federated Learning on Heterogeneous and Long-Tailed Data via Classifier
Re-Training with Federated Features [24.679535905451758]
Federated Learning (FL)は、分散機械学習タスクのためのプライバシ保護ソリューションを提供する。
FLモデルの性能を著しく損なう難題の1つは、データ不均一性と長い尾分布の共起である。
We propose a novel privacy-serving FL method for heterogeneous and long-tailed data via Federated Re-training with Federated Features (CreFF)。
論文 参考訳(メタデータ) (2022-04-28T10:35:11Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。