論文の概要: OmniDrive: A Holistic LLM-Agent Framework for Autonomous Driving with 3D Perception, Reasoning and Planning
- arxiv url: http://arxiv.org/abs/2405.01533v1
- Date: Thu, 2 May 2024 17:59:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-03 15:25:48.835464
- Title: OmniDrive: A Holistic LLM-Agent Framework for Autonomous Driving with 3D Perception, Reasoning and Planning
- Title(参考訳): OmniDrive: 3D知覚、推論、計画による自律運転のためのホロスティックLLM-Agentフレームワーク
- Authors: Shihao Wang, Zhiding Yu, Xiaohui Jiang, Shiyi Lan, Min Shi, Nadine Chang, Jan Kautz, Ying Li, Jose M. Alvarez,
- Abstract要約: 本稿では,エージェントモデルと3次元駆動タスクの整合性を高めるための総合的枠組みを提案する。
我々のフレームワークは、スパースクエリを使って視覚表現を3Dに上げ、圧縮する新しい3DMLLMアーキテクチャから始まります。
OmniDrive-nuScenesは、モデルの真の3次元状況認識に挑戦する新しい視覚的質問応答データセットである。
- 参考スコア(独自算出の注目度): 68.45848423501927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advances in multimodal large language models (MLLMs) have led to growing interests in LLM-based autonomous driving agents to leverage their strong reasoning capabilities. However, capitalizing on MLLMs' strong reasoning capabilities for improved planning behavior is challenging since planning requires full 3D situational awareness beyond 2D reasoning. To address this challenge, our work proposes a holistic framework for strong alignment between agent models and 3D driving tasks. Our framework starts with a novel 3D MLLM architecture that uses sparse queries to lift and compress visual representations into 3D before feeding them into an LLM. This query-based representation allows us to jointly encode dynamic objects and static map elements (e.g., traffic lanes), providing a condensed world model for perception-action alignment in 3D. We further propose OmniDrive-nuScenes, a new visual question-answering dataset challenging the true 3D situational awareness of a model with comprehensive visual question-answering (VQA) tasks, including scene description, traffic regulation, 3D grounding, counterfactual reasoning, decision making and planning. Extensive studies show the effectiveness of the proposed architecture as well as the importance of the VQA tasks for reasoning and planning in complex 3D scenes.
- Abstract(参考訳): MLLM(Multimodal large language model)の進歩により、LLMベースの自律運転エージェントへの関心が高まり、その強力な推論能力が利用できるようになった。
しかし,計画行動を改善するため,MLLMの強い推論能力を活用することは困難である。
この課題に対処するため,エージェントモデルと3次元駆動タスクの整合性を高めるための総合的な枠組みを提案する。
我々のフレームワークは、3次元MLLMアーキテクチャから始まり、スパースクエリを使って視覚表現を3次元に持ち上げ、圧縮し、LLMに入力する。
このクエリベースの表現により、動的オブジェクトと静的マップ要素(例えば、トラフィックレーン)を共同でエンコードすることができ、3Dでの知覚・行動アライメントのための凝縮世界モデルを提供する。
さらに,OmniDrive-nuScenesを提案する。このデータセットは,シーン記述,交通規制,3Dグラウンドニング,ファクトファクチュアル推論,意思決定,計画といった,総合的な視覚的質問応答(VQA)タスクを伴うモデルの真の3次元状況認識に挑戦する新しい視覚的質問応答データセットである。
大規模な研究は、複雑な3Dシーンにおける推論と計画のためのVQAタスクの重要性とともに、提案されたアーキテクチャの有効性を示している。
関連論文リスト
- V3LMA: Visual 3D-enhanced Language Model for Autonomous Driving [2.3302708486956454]
本稿では,LVLMとLLM(Large Language Models)を統合することで,3次元シーン理解を向上させる新しいアプローチであるV3LMAを紹介する。
V3LMAは、オブジェクト検出やビデオ入力から生成されたテキスト記述を活用し、微調整を必要とせずに性能を大幅に向上させる。
本稿では,複雑な交通シナリオにおける状況認識と意思決定を改善し,LingoQAベンチマークのスコア0.56を達成している。
論文 参考訳(メタデータ) (2025-04-30T20:00:37Z) - OmniDrive: A Holistic Vision-Language Dataset for Autonomous Driving with Counterfactual Reasoning [68.45848423501927]
本稿では,エージェントモデルと3次元駆動タスクを対応づける総合的視覚言語データセットを提案する。
提案手法は,代替行動を検討する人間ドライバーと同様,潜在的なシナリオとその成果を評価することによって意思決定を促進する。
論文 参考訳(メタデータ) (2025-04-06T03:54:21Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
視覚言語モデル(VLM)は、空間認識の不十分さや幻覚といった限界に悩まされることが多い。
本稿では,自律走行シーンにおけるメタアクションを確実に生成するVLMの能力を高めるための,検索強化意思決定(RAD)フレームワークを提案する。
我々は,NuScenesデータセットから得られたデータセットに基づいてVLMを微調整し,その空間的知覚と鳥眼視画像理解能力を高める。
論文 参考訳(メタデータ) (2025-03-18T03:25:57Z) - Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving [20.33096710167997]
GPVLという名前の3次元言語事前学習モデルによる生成計画がエンドツーエンドの自動運転のために提案されている。
クロスモーダル言語モデルを導入し、総合的な駆動決定と微粒な軌跡を生成する。
GPVLの効果的で堅牢で効率的な性能は、将来の自動運転システムの実用化に不可欠であると考えられている。
論文 参考訳(メタデータ) (2025-01-15T15:20:46Z) - LargeAD: Large-Scale Cross-Sensor Data Pretraining for Autonomous Driving [52.83707400688378]
LargeADは多用途でスケーラブルなフレームワークで、さまざまな現実世界の運転データセットにわたる大規模3D事前トレーニング用に設計されている。
我々のフレームワークは、VFMを利用して2次元画像から意味的にリッチなスーパーピクセルを抽出し、LiDAR点雲に整列して高品質なコントラストサンプルを生成する。
提案手法は,LDARに基づくセグメント化とオブジェクト検出の両面において,線形探索と微調整の両作業において,最先端の手法よりも大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2025-01-07T18:59:59Z) - LLMI3D: Empowering LLM with 3D Perception from a Single 2D Image [72.14973729674995]
現在の3D認識手法、特に小さなモデルでは、論理的推論、質問応答、オープンシナリオカテゴリの処理に苦労している。
空間的特徴抽出のための空間的局所特徴抽出法,精密な幾何回帰のための3次元問合せ情報復号法,カメラ焦点長変動に対する幾何学投影に基づく3次元推論を提案する。
論文 参考訳(メタデータ) (2024-08-14T10:00:16Z) - Is a 3D-Tokenized LLM the Key to Reliable Autonomous Driving? [66.6886931183372]
我々は,LDMと1層線形プロジェクタを接続する3Dトークン化器として,DETR方式の3Dパーセプトロンを導入する。
その単純さにもかかわらず、Atlasは3D検出とエゴ計画の両方で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T16:57:44Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
本調査では,大規模言語モデルによる3Dデータの処理,理解,生成を可能にする方法論の概要について概説する。
我々の研究は、点雲からニューラル放射場(NeRF)まで、様々な3次元データ表現にまたがっている。
3Dシーン理解、キャプション、質問応答、対話などのタスクにおいて、LLMとの統合を検討する。
論文 参考訳(メタデータ) (2024-05-16T16:59:58Z) - Think-Program-reCtify: 3D Situated Reasoning with Large Language Models [68.52240087262825]
本研究は,3次元環境における自我中心の観察から得られる質問に答えることを目的とした3次元位置推論課題に対処する。
我々は,ThinkProgram-reCtifyループを通じて,大規模言語モデル(LLM)の計画,ツール使用,リフレクション機能を活用する新しいフレームワークを提案する。
SQA3Dベンチマークの実験と解析により,本手法の有効性,解釈可能性,ロバスト性を実証した。
論文 参考訳(メタデータ) (2024-04-23T03:22:06Z) - SpatialPIN: Enhancing Spatial Reasoning Capabilities of Vision-Language Models through Prompting and Interacting 3D Priors [42.85605789984155]
空間的視覚的質問応答(VQA)において、最先端の空間的推論強化VLMを訓練する
本研究では,VLMの空間的推論能力を高めるためのフレームワークであるSpatialPINを提案する。
我々の空間推論型VLMは、空間的VQAの様々な形態でうまく機能し、ピックやスタック、軌道計画といった下流ロボット作業に役立てることができる。
論文 参考訳(メタデータ) (2024-03-18T17:38:29Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Driveは600万以上のビデオテキストペアを備えたベンチマークデータセットである。
我々は、自律運転プロセスが知覚、予測、推論ステップの逐次的な組み合わせであると特徴付けている。
本稿では,自律システムにおける連鎖型推論性能を評価するための新しい集計評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:32:33Z) - An Embodied Generalist Agent in 3D World [67.16935110789528]
本稿では,3次元世界における知覚,接地,推論,計画,行動に優れた多モードジェネリストエージェントLEOを紹介する。
我々は,多種多様なオブジェクトレベルおよびシーンレベルのタスクからなる大規模データセットを収集する。
3Dキャプション,質問応答,具体的推論,ナビゲーション,操作など,多岐にわたるLEOの卓越した習熟度を実証した。
論文 参考訳(メタデータ) (2023-11-18T01:21:38Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。