論文の概要: Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks
- arxiv url: http://arxiv.org/abs/2405.01534v1
- Date: Thu, 2 May 2024 17:59:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-03 15:25:48.832648
- Title: Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks
- Title(参考訳): Plan-Seq-Learn:長い水平ロボットタスクを解くための言語モデルガイドRL
- Authors: Murtaza Dalal, Tarun Chiruvolu, Devendra Chaplot, Ruslan Salakhutdinov,
- Abstract要約: Plan-Seq-Learn (PSL) は、抽象言語と学習した低レベル制御の間のギャップを埋めるためにモーションプランニングを使用するモジュラーアプローチである。
PSLは85%以上の成功率、言語ベース、古典的、エンドツーエンドのアプローチを達成している。
- 参考スコア(独自算出の注目度): 50.27313829438866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been shown to be capable of performing high-level planning for long-horizon robotics tasks, yet existing methods require access to a pre-defined skill library (e.g. picking, placing, pulling, pushing, navigating). However, LLM planning does not address how to design or learn those behaviors, which remains challenging particularly in long-horizon settings. Furthermore, for many tasks of interest, the robot needs to be able to adjust its behavior in a fine-grained manner, requiring the agent to be capable of modifying low-level control actions. Can we instead use the internet-scale knowledge from LLMs for high-level policies, guiding reinforcement learning (RL) policies to efficiently solve robotic control tasks online without requiring a pre-determined set of skills? In this paper, we propose Plan-Seq-Learn (PSL): a modular approach that uses motion planning to bridge the gap between abstract language and learned low-level control for solving long-horizon robotics tasks from scratch. We demonstrate that PSL achieves state-of-the-art results on over 25 challenging robotics tasks with up to 10 stages. PSL solves long-horizon tasks from raw visual input spanning four benchmarks at success rates of over 85%, out-performing language-based, classical, and end-to-end approaches. Video results and code at https://mihdalal.github.io/planseqlearn/
- Abstract(参考訳): 大規模言語モデル(LLM)は、長い水平ロボット作業のために高いレベルの計画を実行することができるが、既存の手法では、事前に定義されたスキルライブラリ(例えば、ピッキング、プレース、プル、プッシュ、ナビゲーティング)にアクセスする必要がある。
しかし、LSMプランニングはこれらの振る舞いの設計や学習の仕方には対処していない。
さらに、多くの興味のあるタスクに対して、ロボットはその振る舞いをきめ細かな方法で調整し、エージェントが低レベルの制御行動を変更できるようにする必要がある。
代わりに、ロボット制御タスクをオンラインで効率的に解くための強化学習(RL)ポリシーを、事前に決められたスキルセットを必要とせずに、LLMからのインターネット規模の知識を高レベルなポリシーに活用できますか?
本稿では,Plan-Seq-Learn(PSL:Plan-Seq-Learn)を提案する。
PSLは、最大10段階の課題ロボットタスク25以上において、最先端の成果を達成できることを実証する。
PSLは、85%以上の成功率で4つのベンチマークにまたがる生の視覚的な入力から、言語ベース、古典的、エンドツーエンドのアプローチまで、長期的なタスクを解決している。
https://mihdalal.github.io/planseqlearn/
関連論文リスト
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
大規模言語モデル(LLM)は、ロボティクスの操作やナビゲーションなど、さまざまな領域にまたがる優れた計画能力を示している。
特殊なLLMエージェント間で高レベル計画および低レベル制御コード生成を分散する新しいマルチエージェントLLMフレームワークを提案する。
長軸タスクを含む9つのRLBenchタスクに対するアプローチを評価し、ゼロショット環境でロボット操作を解く能力を実証した。
論文 参考訳(メタデータ) (2024-11-26T17:53:44Z) - From LLMs to Actions: Latent Codes as Bridges in Hierarchical Robot Control [58.72492647570062]
我々は,制限を克服する代替アーキテクチャとして,Learningable Latent Codes as Bridges (LCB)を導入した。
methodoutperforms baselines that leverage pure language as the interface layer on tasks that requires reasoning and multi-step behaviors。
論文 参考訳(メタデータ) (2024-05-08T04:14:06Z) - Large Language Models for Orchestrating Bimanual Robots [19.60907949776435]
本稿では,Language-based Bimanual Orchestration (LABOR)を提案する。
NICOLヒューマノイドロボットを用いた2種類の長距離作業のシミュレーション実験により,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-02T15:08:35Z) - Yell At Your Robot: Improving On-the-Fly from Language Corrections [84.09578841663195]
高いレベルのポリシーは、人間のフィードバックによって言語修正の形で容易に管理できることを示す。
このフレームワークは、ロボットがリアルタイムの言語フィードバックに迅速に適応するだけでなく、このフィードバックを反復的なトレーニングスキームに組み込むことを可能にする。
論文 参考訳(メタデータ) (2024-03-19T17:08:24Z) - Language Models as Zero-Shot Trajectory Generators [10.572264780575564]
大規模言語モデル(LLM)は最近、ロボットのハイレベルプランナーとして約束されている。
LLMは低レベルの軌道自体に使用する十分な知識を持っていないとしばしば仮定される。
本研究は,LLMが操作タスクに対して,エンドエフェクタの高密度なシーケンスを直接予測できるかどうかを考察する。
論文 参考訳(メタデータ) (2023-10-17T21:57:36Z) - Lifelong Robot Learning with Human Assisted Language Planners [24.66094264866298]
そこで本研究では,LLMベースのプランナを用いて新たなスキルを問合せし,これらのスキルを厳密なオブジェクト操作のためのデータと時間効率でロボットに教える手法を提案する。
本システムでは,将来的な課題に新たに獲得したスキルを再利用し,オープンワールドの可能性と生涯学習の可能性を実証する。
論文 参考訳(メタデータ) (2023-09-25T17:45:55Z) - Learning to Reason over Scene Graphs: A Case Study of Finetuning GPT-2
into a Robot Language Model for Grounded Task Planning [45.51792981370957]
本研究では,ロボットタスク計画における小クラス大規模言語モデル(LLM)の適用性について,計画立案者が順次実行するためのサブゴール仕様にタスクを分解することを学ぶことによって検討する。
本手法は,シーングラフとして表現される領域上でのLLMの入力に基づいて,人間の要求を実行可能なロボット計画に変換する。
本研究は,LLMに格納された知識を長期タスクプランニングに効果的に活用できることを示唆し,ロボット工学におけるニューロシンボリックプランニング手法の今後の可能性を示すものである。
論文 参考訳(メタデータ) (2023-05-12T18:14:32Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
本稿では,移動計画と深いRLを橋渡しするロボット学習のフレームワークであるELF-Pについて紹介する。
ELF-Pは、複数の現実的な操作タスクよりも、関連するベースラインよりもはるかに優れたサンプル効率を有することを示す。
論文 参考訳(メタデータ) (2023-03-16T20:09:47Z) - Hierarchies of Planning and Reinforcement Learning for Robot Navigation [22.08479169489373]
多くのナビゲーションタスクでは、粗いフロアプランのように、高レベル(HL)タスク表現が利用可能である。
これまでの研究は、HL表現における経路計画からなる階層的アプローチによる効率的な学習を実証してきた。
本研究はHL表現のためのトレーニング可能な計画ポリシーを利用する新しい階層的枠組みを提案する。
論文 参考訳(メタデータ) (2021-09-23T07:18:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。