論文の概要: Learning to Reason over Scene Graphs: A Case Study of Finetuning GPT-2
into a Robot Language Model for Grounded Task Planning
- arxiv url: http://arxiv.org/abs/2305.07716v1
- Date: Fri, 12 May 2023 18:14:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 20:06:29.398896
- Title: Learning to Reason over Scene Graphs: A Case Study of Finetuning GPT-2
into a Robot Language Model for Grounded Task Planning
- Title(参考訳): シーングラフによる推論学習:グラウンドド・タスク・プランニングのためのロボット言語モデルへの精巧なGPT-2を事例として
- Authors: Georgia Chalvatzaki, Ali Younes, Daljeet Nandha, An Le, Leonardo F. R.
Ribeiro, and Iryna Gurevych
- Abstract要約: 本研究では,ロボットタスク計画における小クラス大規模言語モデル(LLM)の適用性について,計画立案者が順次実行するためのサブゴール仕様にタスクを分解することを学ぶことによって検討する。
本手法は,シーングラフとして表現される領域上でのLLMの入力に基づいて,人間の要求を実行可能なロボット計画に変換する。
本研究は,LLMに格納された知識を長期タスクプランニングに効果的に活用できることを示唆し,ロボット工学におけるニューロシンボリックプランニング手法の今後の可能性を示すものである。
- 参考スコア(独自算出の注目度): 45.51792981370957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-horizon task planning is essential for the development of intelligent
assistive and service robots. In this work, we investigate the applicability of
a smaller class of large language models (LLMs), specifically GPT-2, in robotic
task planning by learning to decompose tasks into subgoal specifications for a
planner to execute sequentially. Our method grounds the input of the LLM on the
domain that is represented as a scene graph, enabling it to translate human
requests into executable robot plans, thereby learning to reason over
long-horizon tasks, as encountered in the ALFRED benchmark. We compare our
approach with classical planning and baseline methods to examine the
applicability and generalizability of LLM-based planners. Our findings suggest
that the knowledge stored in an LLM can be effectively grounded to perform
long-horizon task planning, demonstrating the promising potential for the
future application of neuro-symbolic planning methods in robotics.
- Abstract(参考訳): 長距離タスクプランニングは、インテリジェントアシストロボットやサービスロボットの開発に不可欠である。
本研究では,ロボットタスクプランニングにおける小規模の大規模言語モデル(llm),特にgpt-2の適用性について,プランナーが順次実行するための下位仕様にタスクを分解することを学ぶことにより検討する。
提案手法は,シーングラフとして表現される領域に基づいてLLMを入力し,人間の要求を実行可能なロボット計画に変換することによって,ALFREDベンチマークで見られるような長距離タスクの推論を学習する。
本手法を古典的計画法とベースライン法と比較し,llmに基づくプランナーの適用性と一般化性について検討した。
本研究は,LLMに格納された知識を長期タスクプランニングに効果的に活用できることを示唆し,ロボット工学におけるニューロシンボリックプランニング手法の今後の可能性を示すものである。
関連論文リスト
- DKPROMPT: Domain Knowledge Prompting Vision-Language Models for Open-World Planning [9.31108717722043]
視覚言語モデル(VLM)はロボットのタスク計画問題に適用されている。
DKPROMPTは、オープンワールドにおける古典的計画のためのPDDLにおけるドメイン知識の利用を促すVLMを自動化する。
論文 参考訳(メタデータ) (2024-06-25T15:49:47Z) - Plan-Seq-Learn: Language Model Guided RL for Solving Long Horizon Robotics Tasks [50.27313829438866]
Plan-Seq-Learn (PSL) は、抽象言語と学習した低レベル制御の間のギャップを埋めるためにモーションプランニングを使用するモジュラーアプローチである。
PSLは85%以上の成功率、言語ベース、古典的、エンドツーエンドのアプローチを達成している。
論文 参考訳(メタデータ) (2024-05-02T17:59:31Z) - What's the Plan? Evaluating and Developing Planning-Aware Techniques for Language Models [7.216683826556268]
大きな言語モデル(LLM)は、計画機能を必要とするアプリケーションにますます使われています。
我々は,新しいハイブリッド・メソドであるSimPlanを紹介し,その性能を新たな挑戦的な設定で評価する。
論文 参考訳(メタデータ) (2024-02-18T07:42:49Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
本稿では,タスク固有の計画表現を自動構築するフレームワークであるAdaについて述べる。
Adaは、プランナー互換の高レベルアクション抽象化と、特定の計画タスク領域に適応した低レベルコントローラのライブラリを対話的に学習する。
論文 参考訳(メタデータ) (2023-12-13T23:35:31Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - SayPlan: Grounding Large Language Models using 3D Scene Graphs for
Scalable Robot Task Planning [15.346150968195015]
本研究では,3次元シーングラフ(DSG)表現を用いた大規模タスクプランニングのスケーラブルなアプローチであるSayPlanを紹介する。
我々は,最大3フロア,36部屋,140部屋までの大規模な2つの環境に対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-07-12T12:37:55Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
本稿では,象徴的タスク計画と機械学習アプローチのギャップを埋めることを目的としたフレームワークを提案する。
大規模言語モデル(LLM)を計画ドメイン定義言語(PDDL)と互換性のあるニューロシンボリックタスクプランナーに訓練する根拠
選択されたドメインにおける予備的な結果から, (i) テストデータセットの95.5%の問題を1,000個のサンプルで解決し, (ii) 従来のシンボルプランナーよりも最大13.5%短いプランを作成し, (iii) 計画の可利用性の平均待ち時間を61.4%まで削減する。
論文 参考訳(メタデータ) (2023-03-01T11:54:22Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Long-Horizon Planning and Execution with Functional Object-Oriented
Networks [79.94575713911189]
タスク計画と実行のためのFOONとしてオブジェクトレベルの知識を活用するというアイデアを紹介します。
提案手法では,FOONをPDDLに自動変換し,市販のプランナ,アクションコンテキスト,ロボットスキルを活用する。
我々はCoppeliaSimの長期タスクに対するアプローチを実証し、学習されたアクションコンテキストを、これまで見たことのないシナリオにどのように拡張できるかを示す。
論文 参考訳(メタデータ) (2022-07-12T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。