Semantically Aligned Question and Code Generation for Automated Insight Generation
- URL: http://arxiv.org/abs/2405.01556v1
- Date: Thu, 21 Mar 2024 10:01:05 GMT
- Title: Semantically Aligned Question and Code Generation for Automated Insight Generation
- Authors: Ananya Singha, Bhavya Chopra, Anirudh Khatry, Sumit Gulwani, Austin Z. Henley, Vu Le, Chris Parnin, Mukul Singh, Gust Verbruggen,
- Abstract summary: We leverage the semantic knowledge of large language models to generate targeted and insightful questions about data.
We show that embeddings can be effectively used for filtering out semantically unaligned pairs of question and code.
- Score: 20.795381712667034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated insight generation is a common tactic for helping knowledge workers, such as data scientists, to quickly understand the potential value of new and unfamiliar data. Unfortunately, automated insights produced by large-language models can generate code that does not correctly correspond (or align) to the insight. In this paper, we leverage the semantic knowledge of large language models to generate targeted and insightful questions about data and the corresponding code to answer those questions. Then through an empirical study on data from Open-WikiTable, we show that embeddings can be effectively used for filtering out semantically unaligned pairs of question and code. Additionally, we found that generating questions and code together yields more diverse questions.
Related papers
- Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - Prompting-based Synthetic Data Generation for Few-Shot Question Answering [23.97949073816028]
We show that using large language models can improve Question Answering performance on various datasets in the few-shot setting.
We suggest that language models contain valuable task-agnostic knowledge that can be used beyond the common pre-training/fine-tuning scheme.
arXiv Detail & Related papers (2024-05-15T13:36:43Z) - Semantic Parsing for Conversational Question Answering over Knowledge
Graphs [63.939700311269156]
We develop a dataset where user questions are annotated with Sparql parses and system answers correspond to execution results thereof.
We present two different semantic parsing approaches and highlight the challenges of the task.
Our dataset and models are released at https://github.com/Edinburgh/SPICE.
arXiv Detail & Related papers (2023-01-28T14:45:11Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
Existing code-to-text generation models produce only high-level summaries of code.
We conduct a human study to identify the criteria for high-quality explanatory docstring for code.
We present a multi-stage fine-tuning strategy and baseline models for the task.
arXiv Detail & Related papers (2022-11-25T18:05:44Z) - An Overview on Controllable Text Generation via Variational
Auto-Encoders [15.97186478109836]
Recent advances in neural-based generative modeling have reignited the hopes of having computer systems capable of conversing with humans.
Latent variable models (LVM) such as variational auto-encoders (VAEs) are designed to characterize the distributional pattern of textual data.
This overview gives an introduction to existing generation schemes, problems associated with text variational auto-encoders, and a review of several applications about the controllable generation.
arXiv Detail & Related papers (2022-11-15T07:36:11Z) - A Survey on Semantics in Automated Data Science [14.331183226753547]
Data Scientists leverage common sense reasoning and domain knowledge to understand and enrich data for building predictive models.
We discuss how leveraging basic semantic reasoning on data in combination with novel tools for data science automation can help with consistent and explainable data augmentation and transformation.
arXiv Detail & Related papers (2022-05-16T23:16:09Z) - A Survey of Deep Learning Models for Structural Code Understanding [21.66270320648155]
We present a comprehensive overview of the structures formed from code data.
We categorize the models for understanding code in recent years into two groups: sequence-based and graph-based models.
We also introduce metrics, datasets and the downstream tasks.
arXiv Detail & Related papers (2022-05-03T03:56:17Z) - Retrieve, Program, Repeat: Complex Knowledge Base Question Answering via
Alternate Meta-learning [56.771557756836906]
We present a novel method that automatically learns a retrieval model alternately with the programmer from weak supervision.
Our system leads to state-of-the-art performance on a large-scale task for complex question answering over knowledge bases.
arXiv Detail & Related papers (2020-10-29T18:28:16Z) - Inquisitive Question Generation for High Level Text Comprehension [60.21497846332531]
We introduce INQUISITIVE, a dataset of 19K questions that are elicited while a person is reading through a document.
We show that readers engage in a series of pragmatic strategies to seek information.
We evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions.
arXiv Detail & Related papers (2020-10-04T19:03:39Z) - Semantic Graphs for Generating Deep Questions [98.5161888878238]
We propose a novel framework which first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN)
On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance.
arXiv Detail & Related papers (2020-04-27T10:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.