Spectral form factor in chaotic, localized, and integrable open quantum many-body systems
- URL: http://arxiv.org/abs/2405.01641v1
- Date: Thu, 2 May 2024 18:04:04 GMT
- Title: Spectral form factor in chaotic, localized, and integrable open quantum many-body systems
- Authors: Jiachen Li, Stephen Yan, Tomaž Prosen, Amos Chan,
- Abstract summary: We numerically study the spectral statistics of open quantum many-body systems (OQMBS) as signatures of quantum chaos (or the lack thereof)
We show that the DSFF of chaotic OQMBS displays the $textitquadratic$ ramp-plateau behaviour of the Ginibre ensemble from random matrix theory.
- Score: 5.849733770560258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We numerically study the spectral statistics of open quantum many-body systems (OQMBS) as signatures of quantum chaos (or the lack thereof), using the dissipative spectral form factor (DSFF), a generalization of the spectral form factor to complex spectra. We show that the DSFF of chaotic OQMBS generically displays the $\textit{quadratic}$ ramp-plateau behaviour of the Ginibre ensemble from random matrix theory, in contrast to the linear ramp-plateau behaviour of the Gaussian ensemble in closed quantum systems. Furthermore, in the presence of many-body interactions, such RMT behaviour emerges only after a time scale $\tau_{\mathrm{dev}}$, which generally increases with system size for sufficiently large system size, and can be identified as the non-Hermitian analogue of the $\textit{many-body Thouless time}$. The universality of the random matrix theory behavior is demonstrated by surveying twelve models of OQMBS, including random Kraus circuits (quantum channels) and random Lindbladians (Liouvillians) in several symmetry classes, as well as Lindbladians of paradigmatic models such as the Sachdev-Ye-Kitaev (SYK), XXZ, and the transverse field Ising models. We devise an unfolding and filtering procedure to remove variations of the averaged density of states which would otherwise hide the universal RMT-like signatures in the DSFF for chaotic OQMBS. Beyond chaotic OQMBS, we study the spectral statistics of non-chaotic OQMBS, specifically the integrable XX model and a system in the many-body localized (MBL) regime in the presence of dissipation, which exhibit DSFF behaviours distinct from the ramp-plateau behaviour of random matrix theory. Lastly, we study the DSFF of Lindbladians with the Hamiltonian term set to zero, i.e. only the jump operators are present, and demonstrate that the results of RMT universality and scaling of many-body Thouless time survive even without coherent evolution.
Related papers
- Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - Quantum Chaos in Random Ising Networks [36.136619420474766]
Investigation of universal quantum chaotic signatures in the transverse field Ising model on an ErdHos-R'enyi network.
Level spacing statistics and the spectral form factor signal this breakdown for sparsely and densely connected networks.
arXiv Detail & Related papers (2024-05-23T09:50:59Z) - Measuring Spectral Form Factor in Many-Body Chaotic and Localized Phases of Quantum Processors [22.983795509221974]
We experimentally measure the spectral form factor (SFF) to probe the presence or absence of chaos in quantum many-body systems.
This work unveils a new way of extracting the universal signatures of many-body quantum chaos in quantum devices by probing the correlations in eigenenergies and eigenstates.
arXiv Detail & Related papers (2024-03-25T16:59:00Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Many-body quantum chaos and emergence of Ginibre ensemble [0.0]
We establish a connection between many-body quantum chaotic (MBQC) systems and the Ginibre random matrix ensemble (GinUE)
We show that the dual spectra of TI MBQC systems necessarily have non-trivial and universal correlations due to the existence of a linear ramp in the spectral form factor (SFF)
Lastly, we remark that locality and the many-body nature of MBQC systems are required for the emergence of the GinUE in large system sizes.
arXiv Detail & Related papers (2022-07-25T17:56:39Z) - Probing quantum chaos in multipartite systems [4.771483851099131]
We show that the contribution of the subsystems to the global behavior can be revealed by probing the full counting statistics.
We show that signatures of quantum chaos in the time domain dictate a dip-ramp-plateau structure in the characteristic function.
Global quantum chaos can be suppressed at strong coupling.
arXiv Detail & Related papers (2021-11-24T13:06:25Z) - Spectral Statistics of Non-Hermitian Matrices and Dissipative Quantum
Chaos [4.653419967010185]
We show that DSFF successfully diagnoses dissipative quantum chaos.
We show correlations between real and imaginary parts of the complex eigenvalues up to arbitrary energy (and time) scale.
For dissipative quantum integrable systems, we show that DSFF takes a constant value except for a region in complex time.
arXiv Detail & Related papers (2021-03-08T19:00:01Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.