Key Patches Are All You Need: A Multiple Instance Learning Framework For Robust Medical Diagnosis
- URL: http://arxiv.org/abs/2405.01654v1
- Date: Thu, 2 May 2024 18:21:25 GMT
- Title: Key Patches Are All You Need: A Multiple Instance Learning Framework For Robust Medical Diagnosis
- Authors: Diogo J. Araújo, M. Rita Verdelho, Alceu Bissoto, Jacinto C. Nascimento, Carlos Santiago, Catarina Barata,
- Abstract summary: We propose to limit the amount of information deep learning models use to reach the final classification, by using a multiple instance learning framework.
We evaluate our framework on two medical applications: skin cancer diagnosis using dermoscopy and breast cancer diagnosis using mammography.
- Score: 15.964609888720315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have revolutionized the field of medical image analysis, due to their outstanding performances. However, they are sensitive to spurious correlations, often taking advantage of dataset bias to improve results for in-domain data, but jeopardizing their generalization capabilities. In this paper, we propose to limit the amount of information these models use to reach the final classification, by using a multiple instance learning (MIL) framework. MIL forces the model to use only a (small) subset of patches in the image, identifying discriminative regions. This mimics the clinical procedures, where medical decisions are based on localized findings. We evaluate our framework on two medical applications: skin cancer diagnosis using dermoscopy and breast cancer diagnosis using mammography. Our results show that using only a subset of the patches does not compromise diagnostic performance for in-domain data, compared to the baseline approaches. However, our approach is more robust to shifts in patient demographics, while also providing more detailed explanations about which regions contributed to the decision. Code is available at: https://github.com/diogojpa99/MedicalMultiple-Instance-Learning.
Related papers
- A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis [48.84443450990355]
Deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexcepted situations.
We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images.
Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language.
arXiv Detail & Related papers (2024-05-23T17:55:02Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - DIAGNOSE: Avoiding Out-of-distribution Data using Submodular Information
Measures [13.492292022589918]
We propose Diagnose, a novel active learning framework that can jointly model similarity and dissimilarity.
Our experiments verify the superiority of Diagnose over the state-of-the-art AL methods across multiple domains of medical imaging.
arXiv Detail & Related papers (2022-10-04T11:07:48Z) - MMLN: Leveraging Domain Knowledge for Multimodal Diagnosis [10.133715767542386]
We propose a knowledge-driven and data-driven framework for lung disease diagnosis.
We formulate diagnosis rules according to authoritative clinical medicine guidelines and learn the weights of rules from text data.
A multimodal fusion consisting of text and image data is designed to infer the marginal probability of lung disease.
arXiv Detail & Related papers (2022-02-09T04:12:30Z) - Meta-repository of screening mammography classifiers [35.24447276237306]
We release a meta-repository containing deep learning models for classification of screening mammograms.
At its inception, our meta-repository contains five state-of-the-art models with open-source implementations.
We compare their performance on five international data sets.
arXiv Detail & Related papers (2021-08-10T17:39:26Z) - Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis [17.936019428281586]
In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output.
We introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images.
We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset.
arXiv Detail & Related papers (2021-06-13T17:25:21Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Explainable Disease Classification via weakly-supervised segmentation [4.154485485415009]
Deep learning approaches to Computer Aided Diagnosis (CAD) typically pose the problem as an image classification (Normal or Abnormal) problem.
This paper examines this problem and proposes an approach which mimics the clinical practice of looking for evidence prior to diagnosis.
The proposed solution is then adapted to Breast Cancer detection from mammographic images.
arXiv Detail & Related papers (2020-08-24T09:00:30Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.