Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis
- URL: http://arxiv.org/abs/2106.07049v2
- Date: Tue, 15 Jun 2021 03:46:23 GMT
- Title: Weakly-supervised High-resolution Segmentation of Mammography Images for
Breast Cancer Diagnosis
- Authors: Kangning Liu, Yiqiu Shen, Nan Wu, Jakub Ch{\l}\k{e}dowski, Carlos
Fernandez-Granda, Krzysztof J. Geras
- Abstract summary: In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output.
We introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images.
We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset.
- Score: 17.936019428281586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last few years, deep learning classifiers have shown promising results
in image-based medical diagnosis. However, interpreting the outputs of these
models remains a challenge. In cancer diagnosis, interpretability can be
achieved by localizing the region of the input image responsible for the
output, i.e. the location of a lesion. Alternatively, segmentation or detection
models can be trained with pixel-wise annotations indicating the locations of
malignant lesions. Unfortunately, acquiring such labels is labor-intensive and
requires medical expertise. To overcome this difficulty, weakly-supervised
localization can be utilized. These methods allow neural network classifiers to
output saliency maps highlighting the regions of the input most relevant to the
classification task (e.g. malignant lesions in mammograms) using only
image-level labels (e.g. whether the patient has cancer or not) during
training. When applied to high-resolution images, existing methods produce
low-resolution saliency maps. This is problematic in applications in which
suspicious lesions are small in relation to the image size. In this work, we
introduce a novel neural network architecture to perform weakly-supervised
segmentation of high-resolution images. The proposed model selects regions of
interest via coarse-level localization, and then performs fine-grained
segmentation of those regions. We apply this model to breast cancer diagnosis
with screening mammography, and validate it on a large clinically-realistic
dataset. Measured by Dice similarity score, our approach outperforms existing
methods by a large margin in terms of localization performance of benign and
malignant lesions, relatively improving the performance by 39.6% and 20.0%,
respectively. Code and the weights of some of the models are available at
https://github.com/nyukat/GLAM
Related papers
- Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - Mixed-UNet: Refined Class Activation Mapping for Weakly-Supervised
Semantic Segmentation with Multi-scale Inference [28.409679398886304]
We develop a novel model named Mixed-UNet, which has two parallel branches in the decoding phase.
We evaluate the designed Mixed-UNet against several prevalent deep learning-based segmentation approaches on our dataset collected from the local hospital and public datasets.
arXiv Detail & Related papers (2022-05-06T08:37:02Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Explainable Disease Classification via weakly-supervised segmentation [4.154485485415009]
Deep learning approaches to Computer Aided Diagnosis (CAD) typically pose the problem as an image classification (Normal or Abnormal) problem.
This paper examines this problem and proposes an approach which mimics the clinical practice of looking for evidence prior to diagnosis.
The proposed solution is then adapted to Breast Cancer detection from mammographic images.
arXiv Detail & Related papers (2020-08-24T09:00:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
We propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision.
We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air between the lung and the chest wall.
arXiv Detail & Related papers (2020-07-01T20:48:35Z) - Breast Cancer Histopathology Image Classification and Localization using
Multiple Instance Learning [2.4178424543973267]
Computer-aided pathology to analyze microscopic histopathology images for diagnosis can bring the cost and delays of diagnosis down.
Deep learning in histopathology has attracted attention over the last decade of achieving state-of-the-art performance in classification and localization tasks.
We present classification and localization results on two publicly available BreakHIS and BACH dataset.
arXiv Detail & Related papers (2020-02-16T10:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.