Leveraging Prompt-Learning for Structured Information Extraction from Crohn's Disease Radiology Reports in a Low-Resource Language
- URL: http://arxiv.org/abs/2405.01682v2
- Date: Wed, 22 May 2024 09:36:25 GMT
- Title: Leveraging Prompt-Learning for Structured Information Extraction from Crohn's Disease Radiology Reports in a Low-Resource Language
- Authors: Liam Hazan, Gili Focht, Naama Gavrielov, Roi Reichart, Talar Hagopian, Mary-Louise C. Greer, Ruth Cytter Kuint, Dan Turner, Moti Freiman,
- Abstract summary: SMP-BERT is a novel prompt learning method for automatically converting free-text radiology reports into structured data.
In our studies, SMP-BERT greatly surpassed traditional fine-tuning methods in performance, notably in detecting infrequent conditions.
- Score: 11.688665498310405
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic conversion of free-text radiology reports into structured data using Natural Language Processing (NLP) techniques is crucial for analyzing diseases on a large scale. While effective for tasks in widely spoken languages like English, generative large language models (LLMs) typically underperform with less common languages and can pose potential risks to patient privacy. Fine-tuning local NLP models is hindered by the skewed nature of real-world medical datasets, where rare findings represent a significant data imbalance. We introduce SMP-BERT, a novel prompt learning method that leverages the structured nature of reports to overcome these challenges. In our studies involving a substantial collection of Crohn's disease radiology reports in Hebrew (over 8,000 patients and 10,000 reports), SMP-BERT greatly surpassed traditional fine-tuning methods in performance, notably in detecting infrequent conditions (AUC: 0.99 vs 0.94, F1: 0.84 vs 0.34). SMP-BERT empowers more accurate AI diagnostics available for low-resource languages.
Related papers
- Large Language Multimodal Models for 5-Year Chronic Disease Cohort Prediction Using EHR Data [15.474201222908107]
Chronic diseases such as diabetes are the leading causes of morbidity and mortality worldwide.
We proposed a novel Large Language Multimodal Models (LLMMs) framework incorporating multimodal data for the prediction of chronic disease risk.
Our method combined a text embedding encoder and multi-head attention layer to learn laboratory test values, utilizing a deep neural network (DNN) module to merge blood features with chronic disease semantics into a latent space.
arXiv Detail & Related papers (2024-03-02T22:33:17Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Multilingual Natural Language Processing Model for Radiology Reports --
The Summary is all you need! [2.4910932804601855]
The generation of radiology impressions was automated by fine-tuning a model based on a multilingual text-to-text Transformer.
In a blind test, two board-certified radiologists indicated that for at least 70% of the system-generated summaries, the quality matched or exceeded the corresponding human-written summaries.
This study showed that the multilingual model outperformed other models that specialized in summarizing radiology reports in only one language, as well as models that were not specifically designed for summarizing radiology reports.
arXiv Detail & Related papers (2023-09-29T19:20:27Z) - Evaluating Large Language Models for Radiology Natural Language
Processing [68.98847776913381]
The rise of large language models (LLMs) has marked a pivotal shift in the field of natural language processing (NLP)
This study seeks to bridge this gap by critically evaluating thirty two LLMs in interpreting radiology reports.
arXiv Detail & Related papers (2023-07-25T17:57:18Z) - Identifying and Extracting Rare Disease Phenotypes with Large Language
Models [12.555067118549347]
ChatGPT is a revolutionary large language model capable of following complex human prompts and generating high-quality responses.
We compared its performance to the traditional fine-tuning approach and conducted an in-depth error analysis.
ChatGPT achieved similar or higher accuracy for certain entities (i.e., rare diseases and signs) in the one-shot setting.
arXiv Detail & Related papers (2023-06-22T03:52:12Z) - Natural Language Processing Methods to Identify Oncology Patients at
High Risk for Acute Care with Clinical Notes [9.49721872804122]
This paper evaluates how natural language processing can be used to identify the risk of acute care use (ACU) in oncology patients.
Risk prediction using structured health data (SHD) is now standard, but predictions using free-text formats are complex.
arXiv Detail & Related papers (2022-09-28T06:31:19Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
Pre-trained language models (LMs) have shown great potential for cross-lingual transfer in low-resource settings.
We show the few-shot cross-lingual transfer property of LMs for named recognition (NER) and apply it to solve a low-resource and real-world challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke.
arXiv Detail & Related papers (2022-04-10T21:46:52Z) - COLD: A Benchmark for Chinese Offensive Language Detection [54.60909500459201]
We use COLDataset, a Chinese offensive language dataset with 37k annotated sentences.
We also propose textscCOLDetector to study output offensiveness of popular Chinese language models.
Our resources and analyses are intended to help detoxify the Chinese online communities and evaluate the safety performance of generative language models.
arXiv Detail & Related papers (2022-01-16T11:47:23Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - A Natural Language Processing Pipeline of Chinese Free-text Radiology
Reports for Liver Cancer Diagnosis [8.549162626766332]
This study designed an NLP pipeline for the direct extraction of clinically relevant features from Chinese radiology reports.
The pipeline was comprised of named entity recognition, synonyms normalization, and relationship extraction.
For liver cancer diagnosis, random forest had the highest predictive performance in liver cancer diagnosis.
arXiv Detail & Related papers (2020-04-10T09:32:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.