論文の概要: Privacy-aware Berrut Approximated Coded Computing for Federated Learning
- arxiv url: http://arxiv.org/abs/2405.01704v2
- Date: Wed, 4 Sep 2024 15:16:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:12:50.070662
- Title: Privacy-aware Berrut Approximated Coded Computing for Federated Learning
- Title(参考訳): フェデレーション学習のためのプライバシを意識したBerrut近似コーデックコンピューティング
- Authors: Xavier Martínez Luaña, Rebeca P. Díaz Redondo, Manuel Fernández Veiga,
- Abstract要約: フェデレートラーニングスキームにおけるプライバシを保証するためのソリューションを提案する。
本提案は,Secret Sharing設定に適応したBerrut Approximated Coded Computingに基づく。
- 参考スコア(独自算出の注目度): 1.2084539012992408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is an interesting strategy that enables the collaborative training of an AI model among different data owners without revealing their private datasets. Even so, FL has some privacy vulnerabilities that have been tried to be overcome by applying some techniques like Differential Privacy (DP), Homomorphic Encryption (HE), or Secure Multi-Party Computation (SMPC). However, these techniques have some important drawbacks that might narrow their range of application: problems to work with non-linear functions and to operate large matrix multiplications and high communication and computational costs to manage semi-honest nodes. In this context, we propose a solution to guarantee privacy in FL schemes that simultaneously solves the previously mentioned problems. Our proposal is based on the Berrut Approximated Coded Computing, a technique from the Coded Distributed Computing paradigm, adapted to a Secret Sharing configuration, to provide input privacy to FL in a scalable way. It can be applied for computing non-linear functions and treats the special case of distributed matrix multiplication, a key primitive at the core of many automated learning tasks. Because of these characteristics, it could be applied in a wide range of FL scenarios, since it is independent of the machine learning models or aggregation algorithms used in the FL scheme. We provide analysis of the achieved privacy and complexity of our solution and, due to the extensive numerical results performed, a good trade-off between privacy and precision can be observed.
- Abstract(参考訳): フェデレートラーニング(FL)は、プライベートデータセットを公開せずに、異なるデータ所有者間でAIモデルの協調トレーニングを可能にする興味深い戦略である。
それでもFLには、差分プライバシ(DP)、ホモモルフィック暗号化(HE)、セキュアマルチパーティ計算(SMPC)など、いくつかのテクニックを適用することで克服された、いくつかのプライバシー上の脆弱性がある。
しかしながら、これらの手法には、非線形関数を扱うことや、大きな行列乗算を演算すること、半正直なノードを管理するための高い通信と計算コストなど、適用範囲を狭めるいくつかの重要な欠点がある。
そこで本稿では,FLスキームのプライバシを保証し,上記の問題を同時に解決する手法を提案する。
提案手法は,シークレット共有構成に適応し,FLへの入力プライバシをスケーラブルに提供するための,Coded Distributed ComputingパラダイムのテクニックであるBerrut Approximated Coded Computingに基づく。
これは非線形関数の計算に適用でき、分散行列乗法(分散行列乗法)の特殊な場合を扱う。
これらの特徴から、FLスキームで使用される機械学習モデルや集約アルゴリズムとは独立しているため、幅広いFLシナリオに適用することができる。
我々は,ソリューションの達成したプライバシと複雑性の分析を行い,その数値的な結果から,プライバシと精度の良好なトレードオフが観察できる。
関連論文リスト
- Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - UFed-GAN: A Secure Federated Learning Framework with Constrained
Computation and Unlabeled Data [50.13595312140533]
本稿では,UFed-GAN: Unsupervised Federated Generative Adversarial Networkを提案する。
実験により,プライバシを保ちながら,限られた計算資源とラベルなしデータに対処するUFed-GANの強い可能性を示す。
論文 参考訳(メタデータ) (2023-08-10T22:52:13Z) - Over-the-Air Federated Learning In Broadband Communication [0.0]
Federated Learning(FL)は、プライバシ保護のための分散機械学習パラダイムで、無線エッジで動作する。
いくつかはセキュアなマルチパーティ計算に依存しており、推論攻撃に弱い可能性がある。
他のものは差分プライバシーを採用しているが、これは少数のデータに寄与する多数のパーティを扱う際のテストの精度を低下させる可能性がある。
論文 参考訳(メタデータ) (2023-06-03T00:16:27Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
複数の基地局とセル間干渉を持つ無線システムにおける連合学習モデルを考える。
本稿では,学習過程の収束挙動を,その最適性ギャップの上限を導出することによって示す。
提案するスケジューラは,ランダムなスケジューラと比較して予測平均精度を向上する。
論文 参考訳(メタデータ) (2022-08-25T03:37:11Z) - Privacy-Preserving Federated Learning via System Immersion and Random
Matrix Encryption [4.258856853258348]
フェデレーション学習(FL)は、クライアントが中央集権的な(潜在的に敵対的な)サーバとデータを共有するのではなく、デバイス上でAIモデルをトレーニングする、コラボレーティブな分散学習のためのプライバシソリューションとして登場した。
本稿では,制御理論からの行列暗号とシステム浸漬ツールの相乗効果に基づいて,プライバシ保護フェデレーションラーニング(PPFL)フレームワークを提案する。
提案アルゴリズムは,クライアントのデータに関する情報を公開せずに,標準FLと同等の精度と収束率を無視できるコストで提供することを示す。
論文 参考訳(メタデータ) (2022-04-05T21:28:59Z) - APPFL: Open-Source Software Framework for Privacy-Preserving Federated
Learning [0.0]
フェデレートラーニング(FL)は、従来の機械学習のように、データを中央の場所に転送する代わりに、異なる場所でトレーニングモデルを実行し、トレーニングから重みを更新することを可能にする。
本稿では,Argonneのプライバシ保護フェデレート学習フレームワークであるAPPFLを紹介する。
APPFLは、実装されたプライバシ保存アルゴリズムを活用し、新しいアルゴリズムを実装し、さまざまなFLアルゴリズムをプライバシ保存技術でシミュレートし、デプロイすることを可能にする。
論文 参考訳(メタデータ) (2022-02-08T06:23:05Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Private Multi-Task Learning: Formulation and Applications to Federated
Learning [44.60519521554582]
マルチタスク学習は、ヘルスケア、ファイナンス、IoTコンピューティングなどの分野において、プライバシに敏感なアプリケーションに関係している。
我々は,MTLにおけるクライアントレベルのプライバシの概念を,共同微分プライバシ(JDP),メカニズム設計と分散最適化のための微分プライバシの緩和を通じて形式化する。
そこで我々は,パーソナライズド・フェデレーション・ラーニングの応用を目的とした,平均正規化MLLのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-30T03:37:36Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
感性分析のための新しいテクスチブリド自動識別システム(AD)を導入する。
これにより、ニューラルネットワークをプライベートデータ上でトレーニングするなど、任意の微分可能な関数合成の感度をモデル化できる。
当社のアプローチは,データ処理の設定において,プライバシ損失に関する原則的推論を可能にする。
論文 参考訳(メタデータ) (2021-07-09T07:19:23Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
フェデレーション学習は、複数のエージェントと連携してグローバルモデルを見つける中央プロセッサを含む。
複数のクライアントに接続されたサーバの現在のアーキテクチャは、サーバの通信障害や計算過負荷に非常に敏感です。
暗号と差分プライバシーの概念を使用して、グラフ構造に拡張するフェデレーション学習アルゴリズムを民営化します。
論文 参考訳(メタデータ) (2021-04-26T09:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。