論文の概要: A deep causal inference model for fully-interpretable travel behaviour analysis
- arxiv url: http://arxiv.org/abs/2405.01708v1
- Date: Thu, 2 May 2024 20:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:34:45.225881
- Title: A deep causal inference model for fully-interpretable travel behaviour analysis
- Title(参考訳): 完全解釈可能な旅行行動解析のための深い因果推論モデル
- Authors: Kimia Kamal, Bilal Farooq,
- Abstract要約: 旅行行動の因果関係を明示的にモデル化するフレームワークである traveL behavIour analysis (CAROLINA) の深部CAusal infeRence mOdel について述べる。
この枠組みでは,人間の行動を予測するためのジェネレーティブ・カウンティカル・モデルを導入する。
本稿では、因果関係の解明、予測精度、政策介入の評価における提案モデルの有効性を実証する。
- 参考スコア(独自算出の注目度): 4.378407481656902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transport policy assessment often involves causal questions, yet the causal inference capabilities of traditional travel behavioural models are at best limited. We present the deep CAusal infeRence mOdel for traveL behavIour aNAlysis (CAROLINA), a framework that explicitly models causality in travel behaviour, enhances predictive accuracy, and maintains interpretability by leveraging causal inference, deep learning, and traditional discrete choice modelling. Within this framework, we introduce a Generative Counterfactual model for forecasting human behaviour by adapting the Normalizing Flow method. Through the case studies of virtual reality-based pedestrian crossing behaviour, revealed preference travel behaviour from London, and synthetic data, we demonstrate the effectiveness of our proposed models in uncovering causal relationships, prediction accuracy, and assessing policy interventions. Our results show that intervention mechanisms that can reduce pedestrian stress levels lead to a 38.5% increase in individuals experiencing shorter waiting times. Reducing the travel distances in London results in a 47% increase in sustainable travel modes.
- Abstract(参考訳): 交通政策評価は因果問題を伴うことが多いが、伝統的な旅行行動モデルの因果推論能力は最も限られている。
本稿では、旅行行動における因果関係を明示的にモデル化し、予測精度を高め、因果推論、深層学習、従来の個別選択モデルを利用して解釈可能性を維持するフレームワークである、traveL behavIour analysis(CAROLINA)の深部CAusal infeRence mOdelを提案する。
本枠組みでは, 正規化フロー法を適用し, 人間の行動予測のための生成対実モデルを提案する。
仮想現実感に基づく歩行者横断行動のケーススタディを通じて、ロンドンからの嗜好旅行行動と合成データを明らかにし、因果関係の解明、予測精度、政策介入の評価において提案したモデルの有効性を実証した。
以上の結果から,歩行者のストレスレベルを低下させる介入機構が,待ち時間の短い個人において38.5%の増加につながることが示唆された。
ロンドンにおける旅行距離の減少は、持続可能な旅行モードの47%の増加をもたらす。
関連論文リスト
- Counterfactual Generative Modeling with Variational Causal Inference [1.9287470458589586]
本稿では, 逆ファクト生成モデリングタスクを扱うための変分ベイズ因果推論フレームワークを提案する。
実験では, 反ファクト生成モデルにおける最先端モデルと比較して, フレームワークの利点を実証する。
論文 参考訳(メタデータ) (2024-10-16T16:44:12Z) - MSCT: Addressing Time-Varying Confounding with Marginal Structural Causal Transformer for Counterfactual Post-Crash Traffic Prediction [24.3907895281179]
本稿では,ポストクラッシュ交通予測のための新しい深層学習モデルを提案する。
提案モデルでは, 仮説的衝突介入戦略の下での交通速度の理解と予測に特化して, 処理を意識したモデルを提案する。
このモデルは、合成データと実世界のデータの両方を用いて検証され、MSCTがマルチステップ・アヘッド予測性能において最先端モデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-07-19T06:42:41Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
本稿では,分布外ケースに対する頑健な一般化性を有する動き予測のための解釈可能な生成モデルを提案する。
このモデルでは, 長期目的地の空間分布を推定することにより, 目標駆動動作予測を実現する。
動き予測データセットの実験は、適合したモデルが解釈可能で一般化可能であることを検証した。
論文 参考訳(メタデータ) (2024-03-10T04:16:04Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - Using Models Based on Cognitive Theory to Predict Human Behavior in
Traffic: A Case Study [4.705182901389292]
本研究では,ギャップ受容シナリオにおける人間の行動予測のための認知的確証のある新しいモデルの有用性について検討する。
我々は、このモデルが確立されたデータ駆動予測モデルと競合したり、さらに優れていることを示す。
論文 参考訳(メタデータ) (2023-05-24T14:27:00Z) - Spatio-temporal neural structural causal models for bike flow prediction [2.991894112851257]
自転車シェアリングシステムの基本的な問題は、自転車のフロー予測である。
近年の輸送システムにおける文脈条件の過度な強調手法が注目されている。
時空間構造因果モデルを提案する。
論文 参考訳(メタデータ) (2023-01-19T01:39:21Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
ロボットシステムの鍵となる課題は、他のエージェントの振る舞いを理解することである。
正しい推論の処理は、(衝突)因子が実験的に制御されない場合、特に困難である。
人に関する観察研究を行うために必要なツールをロボットに装備することを提案する。
論文 参考訳(メタデータ) (2022-01-27T22:15:56Z) - Equality of opportunity in travel behavior prediction with deep neural
networks and discrete choice models [3.4806267677524896]
本研究では,旅行行動分析に重要な欠落次元である計算公正性を導入する。
まず、機会の平等によって計算公正性を運用し、次に、データ固有のバイアスと、モデリングによって導入されたバイアスを区別する。
論文 参考訳(メタデータ) (2021-09-25T19:02:23Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
ニューラル常微分方程式を多状態生存モデル推定のためのフレキシブルで一般的な方法として用いる。
また,本モデルでは,サバイバルデータセット上での最先端性能を示すとともに,マルチステート環境での有効性を示す。
論文 参考訳(メタデータ) (2020-06-08T19:24:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。