Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs
- URL: http://arxiv.org/abs/2405.01737v1
- Date: Thu, 2 May 2024 21:13:34 GMT
- Title: Sample-efficient neural likelihood-free Bayesian inference of implicit HMMs
- Authors: Sanmitra Ghosh, Paul J. Birrell, Daniela De Angelis,
- Abstract summary: We propose a novel, sample-efficient likelihood-free method for estimating the high-dimensional hidden states of an implicit HMM.
Our approach relies on learning directly the intractable posterior distribution of the hidden states, using an autoregressive-flow, by exploiting the Markov property.
- Score: 1.8843687952462742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Likelihood-free inference methods based on neural conditional density estimation were shown to drastically reduce the simulation burden in comparison to classical methods such as ABC. When applied in the context of any latent variable model, such as a Hidden Markov model (HMM), these methods are designed to only estimate the parameters, rather than the joint distribution of the parameters and the hidden states. Naive application of these methods to a HMM, ignoring the inference of this joint posterior distribution, will thus produce an inaccurate estimate of the posterior predictive distribution, in turn hampering the assessment of goodness-of-fit. To rectify this problem, we propose a novel, sample-efficient likelihood-free method for estimating the high-dimensional hidden states of an implicit HMM. Our approach relies on learning directly the intractable posterior distribution of the hidden states, using an autoregressive-flow, by exploiting the Markov property. Upon evaluating our approach on some implicit HMMs, we found that the quality of the estimates retrieved using our method is comparable to what can be achieved using a much more computationally expensive SMC algorithm.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Representation and De-interleaving of Mixtures of Hidden Markov Processes [3.7348616912887445]
De-interleaving of mixtures of Hidden Markov Processes (HMPs) generally depends on its representation model.
This paper proposes a novel representation model and corresponding de-interleaving methods for the mixtures of HMPs.
arXiv Detail & Related papers (2024-06-01T12:24:23Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - A Tale of Sampling and Estimation in Discounted Reinforcement Learning [50.43256303670011]
We present a minimax lower bound on the discounted mean estimation problem.
We show that estimating the mean by directly sampling from the discounted kernel of the Markov process brings compelling statistical properties.
arXiv Detail & Related papers (2023-04-11T09:13:17Z) - Convergence of uncertainty estimates in Ensemble and Bayesian sparse
model discovery [4.446017969073817]
We show empirical success in terms of accuracy and robustness to noise with bootstrapping-based sequential thresholding least-squares estimator.
We show that this bootstrapping-based ensembling technique can perform a provably correct variable selection procedure with an exponential convergence rate of the error rate.
arXiv Detail & Related papers (2023-01-30T04:07:59Z) - Tractable and Near-Optimal Adversarial Algorithms for Robust Estimation
in Contaminated Gaussian Models [1.609950046042424]
Consider the problem of simultaneous estimation of location and variance matrix under Huber's contaminated Gaussian model.
First, we study minimum $f$-divergence estimation at the population level, corresponding to a generative adversarial method with a nonparametric discriminator.
We develop tractable adversarial algorithms with simple spline discriminators, which can be implemented via nested optimization.
The proposed methods are shown to achieve minimax optimal rates or near-optimal rates depending on the $f$-divergence and the penalty used.
arXiv Detail & Related papers (2021-12-24T02:46:51Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Large-Scale Shrinkage Estimation under Markovian Dependence [0.348062676775249]
We consider the problem of simultaneous estimation of a sequence of dependent parameters that are generated from a hidden Markov model.
We study the roles of statistical shrinkage for improved estimation of these dependent parameters.
Our proposed method elegantly combines non-parametric shrinkage ideas with efficient estimation of the hidden states under Markovian dependence.
arXiv Detail & Related papers (2020-03-04T03:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.