論文の概要: ALCM: Autonomous LLM-Augmented Causal Discovery Framework
- arxiv url: http://arxiv.org/abs/2405.01744v1
- Date: Thu, 2 May 2024 21:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:24:53.188497
- Title: ALCM: Autonomous LLM-Augmented Causal Discovery Framework
- Title(参考訳): ALCM: 自律型LLM拡張因果発見フレームワーク
- Authors: Elahe Khatibi, Mahyar Abbasian, Zhongqi Yang, Iman Azimi, Amir M. Rahmani,
- Abstract要約: 我々は、データ駆動因果探索アルゴリズムと大規模言語モデルとを相乗化するために、ALCM(Autonomous LLM-Augmented Causal Discovery Framework)という新しいフレームワークを導入する。
ALCMは、因果構造学習(英語版)、因果ラッパー(英語版)、LLM駆動因果リファクター(英語版)の3つの統合的な構成要素から構成される。
我々は、よく知られた7つのデータセットに2つのデモを実装することで、ALCMフレームワークを評価する。
- 参考スコア(独自算出の注目度): 2.1470800327528843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To perform effective causal inference in high-dimensional datasets, initiating the process with causal discovery is imperative, wherein a causal graph is generated based on observational data. However, obtaining a complete and accurate causal graph poses a formidable challenge, recognized as an NP-hard problem. Recently, the advent of Large Language Models (LLMs) has ushered in a new era, indicating their emergent capabilities and widespread applicability in facilitating causal reasoning across diverse domains, such as medicine, finance, and science. The expansive knowledge base of LLMs holds the potential to elevate the field of causal reasoning by offering interpretability, making inferences, generalizability, and uncovering novel causal structures. In this paper, we introduce a new framework, named Autonomous LLM-Augmented Causal Discovery Framework (ALCM), to synergize data-driven causal discovery algorithms and LLMs, automating the generation of a more resilient, accurate, and explicable causal graph. The ALCM consists of three integral components: causal structure learning, causal wrapper, and LLM-driven causal refiner. These components autonomously collaborate within a dynamic environment to address causal discovery questions and deliver plausible causal graphs. We evaluate the ALCM framework by implementing two demonstrations on seven well-known datasets. Experimental results demonstrate that ALCM outperforms existing LLM methods and conventional data-driven causal reasoning mechanisms. This study not only shows the effectiveness of the ALCM but also underscores new research directions in leveraging the causal reasoning capabilities of LLMs.
- Abstract(参考訳): 高次元データセットにおいて効果的な因果推論を行い、因果発見によるプロセスの開始が必須であり、観察データに基づいて因果グラフを生成する。
しかし、完全かつ正確な因果グラフを得るには、NPハード問題として認識される深刻な課題が伴う。
近年,Large Language Models (LLMs) の出現は,医学,金融,科学など多種多様な分野における因果推論を促進する上で,その創発的能力と広範な適用性を示している。
LLMの広大な知識基盤は、解釈可能性を提供し、推論し、一般化し、新しい因果構造を明らかにすることによって因果推論の分野を増大させる可能性を持っている。
本稿では,ALCM(Autonomous LLM-Augmented Causal Discovery Framework)と呼ばれる新しいフレームワークを導入する。
ALCMは、因果構造学習(英語版)、因果ラッパー(英語版)、LLM駆動因果リファクター(英語版)の3つの統合的な構成要素から構成される。
これらのコンポーネントは動的環境内で自律的に協調し、因果発見問題に対処し、妥当な因果グラフを提供する。
我々は、よく知られた7つのデータセットに2つのデモを実装することで、ALCMフレームワークを評価する。
実験の結果,ALCMは従来のLCM法や従来のデータ駆動因果推論機構よりも優れていた。
本研究は,ALCMの有効性だけでなく,LSMの因果推論能力を活用する上での新たな研究の方向性を裏付けるものである。
関連論文リスト
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - From Pre-training Corpora to Large Language Models: What Factors Influence LLM Performance in Causal Discovery Tasks? [51.42906577386907]
本研究では,因果発見タスクにおけるLarge Language Models(LLM)の性能に影響を与える要因について検討する。
因果関係の頻度が高いことは、より良いモデル性能と相関し、トレーニング中に因果関係の情報に広範囲に暴露することで、因果関係の発見能力を高めることを示唆している。
論文 参考訳(メタデータ) (2024-07-29T01:45:05Z) - Causal Graph Discovery with Retrieval-Augmented Generation based Large Language Models [23.438388321411693]
因果グラフの回復は、伝統的に統計的推定に基づく手法や、興味のある変数に関する個人の知識に基づいて行われる。
本稿では,大言語モデル(LLM)を利用して,一般的な因果グラフ復元タスクにおける因果関係を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-23T13:02:10Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Causal Inference Using LLM-Guided Discovery [34.040996887499425]
グラフ変数(因果順序)に対する位相的順序は、因果効果の推論にのみ十分であることを示す。
本稿では,Large Language Models (LLMs) から因果順序を求める頑健な手法を提案する。
提案手法は発見アルゴリズムと比較して因果順序精度を大幅に向上させる。
論文 参考訳(メタデータ) (2023-10-23T17:23:56Z) - From Query Tools to Causal Architects: Harnessing Large Language Models
for Advanced Causal Discovery from Data [19.264745484010106]
大規模言語モデル (LLM) は、多くの社会的影響のある領域における概念間の因果解析の優れた能力を示す。
様々な因果発見および推論タスクにおけるLLM性能に関する最近の研究は、因果関係の古典的な3段階の枠組みに新たなはしごを生じさせている。
本稿では,知識に基づくLLM因果解析とデータ駆動因果構造学習を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-06-29T12:48:00Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
大規模言語モデル(LLM)は、高い確率で因果引数を生成することができる。
LLMは人間のドメインの専門家によって因果解析のセットアップの労力を節約するために使われる。
論文 参考訳(メタデータ) (2023-04-28T19:00:43Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。