論文の概要: Causal Inference Using LLM-Guided Discovery
- arxiv url: http://arxiv.org/abs/2310.15117v1
- Date: Mon, 23 Oct 2023 17:23:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 18:27:15.347104
- Title: Causal Inference Using LLM-Guided Discovery
- Title(参考訳): LLM誘導ディスカバリによる因果推論
- Authors: Aniket Vashishtha, Abbavaram Gowtham Reddy, Abhinav Kumar, Saketh
Bachu, Vineeth N Balasubramanian, Amit Sharma
- Abstract要約: グラフ変数(因果順序)に対する位相的順序は、因果効果の推論にのみ十分であることを示す。
本稿では,Large Language Models (LLMs) から因果順序を求める頑健な手法を提案する。
提案手法は発見アルゴリズムと比較して因果順序精度を大幅に向上させる。
- 参考スコア(独自算出の注目度): 34.040996887499425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: At the core of causal inference lies the challenge of determining reliable
causal graphs solely based on observational data. Since the well-known backdoor
criterion depends on the graph, any errors in the graph can propagate
downstream to effect inference. In this work, we initially show that complete
graph information is not necessary for causal effect inference; the topological
order over graph variables (causal order) alone suffices. Further, given a node
pair, causal order is easier to elicit from domain experts compared to graph
edges since determining the existence of an edge can depend extensively on
other variables. Interestingly, we find that the same principle holds for Large
Language Models (LLMs) such as GPT-3.5-turbo and GPT-4, motivating an automated
method to obtain causal order (and hence causal effect) with LLMs acting as
virtual domain experts. To this end, we employ different prompting strategies
and contextual cues to propose a robust technique of obtaining causal order
from LLMs. Acknowledging LLMs' limitations, we also study possible techniques
to integrate LLMs with established causal discovery algorithms, including
constraint-based and score-based methods, to enhance their performance.
Extensive experiments demonstrate that our approach significantly improves
causal ordering accuracy as compared to discovery algorithms, highlighting the
potential of LLMs to enhance causal inference across diverse fields.
- Abstract(参考訳): 因果推論の核心は、観測データのみに基づいて信頼できる因果グラフを決定することにある。
既知のバックドアの基準はグラフに依存するため、グラフ内のエラーはすべて下流に伝播し、効果推論を行うことができる。
本研究では、まず、因果効果推論には完全なグラフ情報を必要としないことを示し、グラフ変数(因果順序)の位相的順序だけでは十分である。
さらに、ノード対が与えられると、エッジの存在を決定することは他の変数に大きく依存するので、グラフエッジと比較してドメインの専門家から因果順序を引き出すのが容易になる。
興味深いことに、GPT-3.5-turbo や GPT-4 のような大規模言語モデル(LLM)も同様の原理を持ち、仮想ドメインの専門家として機能する LLM と因果順序(および因果効果)を求める自動手法を動機付けている。
この目的のために,LLMから因果順序を求める頑健な手法を提案するために,異なるプロンプト戦略と文脈的手法を用いる。
また, LLMの限界を認識し, LLMを制約ベースやスコアベースなど, 確立された因果探索アルゴリズムと統合し, 性能を向上させる技術についても検討する。
広範な実験により,提案手法は発見アルゴリズムに比べて有意に因果順序付け精度が向上し,多種多様な分野にわたる因果推論を強化するllmの可能性を強調した。
関連論文リスト
- Learning to Defer for Causal Discovery with Imperfect Experts [59.071731337922664]
L2D-CDは、専門家の推薦の正しさを測り、データ駆動因果発見結果と最適に組み合わせる手法である。
我々は,標準T"ubingenペアデータセット上でL2D-CDを評価し,因果探索法と分離に用いる専門家の双方と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2025-02-18T18:55:53Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
大規模言語モデル(LLM)は、幅広いタスクで顕著な成功を収めている。
しかし、彼らは情報片間の関係を理解し、推論する必要があるタスクの推論において、依然として課題に直面している。
この課題は、論理的推論やマルチホップ質問応答など、多段階プロセスに関わるタスクにおいて特に顕著である。
本稿では、まず文脈から明示的なグラフを構築することにより、グラフを用いた推論(RwG)を提案する。
論文 参考訳(メタデータ) (2025-01-14T05:18:20Z) - Discovery of Maximally Consistent Causal Orders with Large Language Models [0.8192907805418583]
因果発見は複雑なシステムを理解するのに不可欠である。
伝統的な手法は、しばしば強く、証明不可能な仮定に依存する。
本稿では,非循環型トーナメントのクラスを導出する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-18T16:37:51Z) - Prompting Strategies for Enabling Large Language Models to Infer Causation from Correlation [68.58373854950294]
我々は因果推論に焦点をあて,相関情報に基づく因果関係の確立という課題に対処する。
この問題に対して,元のタスクを固定的なサブクエストに分割するプロンプト戦略を導入する。
既存の因果ベンチマークであるCorr2Causeに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-12-18T15:32:27Z) - CausalGraph2LLM: Evaluating LLMs for Causal Queries [49.337170619608145]
CausalGraph2LLMは、さまざまな因果グラフ設定にまたがる700万以上のクエリからなるベンチマークである。
この領域ではLSMは有望であるが, 使用するエンコーディングに非常に敏感であることがわかった。
論文 参考訳(メタデータ) (2024-10-21T12:12:21Z) - Large Language Models are Effective Priors for Causal Graph Discovery [6.199818486385127]
専門家によって提供された背景知識を統合して仮説空間を縮小することにより、観測による因果構造発見を改善することができる。
近年,Large Language Models (LLMs) は,人的専門家に対するクエリコストの低さから,事前情報源として考えられ始めている。
論文 参考訳(メタデータ) (2024-05-22T11:39:11Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
我々は、データ駆動因果探索アルゴリズムと大規模言語モデルとを相乗化するために、ALCM(Autonomous LLM-Augmented Causal Discovery Framework)という新しいフレームワークを導入する。
ALCMは、因果構造学習(英語版)、因果ラッパー(英語版)、LLM駆動因果リファクター(英語版)の3つの統合的な構成要素から構成される。
我々は、よく知られた7つのデータセットに2つのデモを実装することで、ALCMフレームワークを評価する。
論文 参考訳(メタデータ) (2024-05-02T21:27:45Z) - Redefining the Shortest Path Problem Formulation of the Linear Non-Gaussian Acyclic Model: Pairwise Likelihood Ratios, Prior Knowledge, and Path Enumeration [0.0]
本稿では,LiNGAM-SPPフレームワークの3倍拡張を提案する。
パラメータチューニングの必要性は、kNNベースの相互情報の代わりに、ペアワイズ確率比を用いて排除される。
先行知識の組み入れは、すべての因果順序のグラフ表現に実装されたノードスキッピング戦略によって実現される。
論文 参考訳(メタデータ) (2024-04-18T05:59:28Z) - Zero-shot Causal Graph Extrapolation from Text via LLMs [50.596179963913045]
我々は,自然言語から因果関係を推定する大規模言語モデル (LLM) の能力を評価する。
LLMは、(特別な)トレーニングサンプルを必要とせずにペア関係のベンチマークで競合性能を示す。
我々は、反復的なペアワイズクエリを通して因果グラフを外挿するアプローチを拡張した。
論文 参考訳(メタデータ) (2023-12-22T13:14:38Z) - Causal Reasoning and Large Language Models: Opening a New Frontier for Causality [29.433401785920065]
大規模言語モデル(LLM)は、高い確率で因果引数を生成することができる。
LLMは人間のドメインの専門家によって因果解析のセットアップの労力を節約するために使われる。
論文 参考訳(メタデータ) (2023-04-28T19:00:43Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。