論文の概要: A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law
- arxiv url: http://arxiv.org/abs/2405.01769v2
- Date: Thu, 21 Nov 2024 23:39:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:01:35.771416
- Title: A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law
- Title(参考訳): クリティカル・ソシエタリ・ドメインのための大規模言語モデルに関する調査--財務・医療・法律
- Authors: Zhiyu Zoey Chen, Jing Ma, Xinlu Zhang, Nan Hao, An Yan, Armineh Nourbakhsh, Xianjun Yang, Julian McAuley, Linda Petzold, William Yang Wang,
- Abstract要約: 大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
- 参考スコア(独自算出の注目度): 65.87885628115946
- License:
- Abstract: In the fast-evolving domain of artificial intelligence, large language models (LLMs) such as GPT-3 and GPT-4 are revolutionizing the landscapes of finance, healthcare, and law: domains characterized by their reliance on professional expertise, challenging data acquisition, high-stakes, and stringent regulatory compliance. This survey offers a detailed exploration of the methodologies, applications, challenges, and forward-looking opportunities of LLMs within these high-stakes sectors. We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies. Moreover, we critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems that respect regulatory norms. By presenting a thorough review of current literature and practical applications, we showcase the transformative impact of LLMs, and outline the imperative for interdisciplinary cooperation, methodological advancements, and ethical vigilance. Through this lens, we aim to spark dialogue and inspire future research dedicated to maximizing the benefits of LLMs while mitigating their risks in these precision-dependent sectors. To facilitate future research on LLMs in these critical societal domains, we also initiate a reading list that tracks the latest advancements under this topic, which will be continually updated: \url{https://github.com/czyssrs/LLM_X_papers}.
- Abstract(参考訳): 人工知能の急速な発展の中で、GPT-3やGPT-4のような大規模言語モデル(LLM)は、金融、医療、法律の風景に革命をもたらしている。
この調査は、これらのハイテイク分野におけるLCMの方法論、応用、課題、そして先見的な機会を詳細に調査する。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
さらに、これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と規制規範を尊重する透明で公平で堅牢なAIシステムの必要性を指摘した。
現状の文献と実践的応用を概観することにより, LLMの変革的影響を概観し, 学際的協力, 方法論的進歩, 倫理的警戒の要点を概説する。
このレンズを通して、これらの精度依存セクターにおけるリスクを軽減しつつ、LLMのメリットを最大化することを目的とした対話を刺激し、将来の研究を刺激することを目的としている。
これらの重要な社会的領域におけるLCMの今後の研究を促進するために、このトピックの最新の進歩を追跡する読み込みリストも開始する。
関連論文リスト
- Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - Decoding Large-Language Models: A Systematic Overview of Socio-Technical Impacts, Constraints, and Emerging Questions [1.1970409518725493]
この記事では、倫理的考察とともに、社会に肯定的な影響を与える可能性のある適用領域を強調します。
これには、開発に関する責任ある考慮、アルゴリズムの改善、倫理的課題、社会的影響が含まれる。
論文 参考訳(メタデータ) (2024-09-25T14:36:30Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - Navigating LLM Ethics: Advancements, Challenges, and Future Directions [5.023563968303034]
本研究では,人工知能分野におけるLarge Language Models(LLM)を取り巻く倫理的問題に対処する。
LLMと他のAIシステムによってもたらされる共通の倫理的課題を探求する。
幻覚、検証可能な説明責任、検閲の複雑さの復号化といった課題を強調している。
論文 参考訳(メタデータ) (2024-05-14T15:03:05Z) - Exploring the Nexus of Large Language Models and Legal Systems: A Short Survey [1.0770079992809338]
LLM(Large Language Models)の能力は、法律分野におけるユニークな役割をますます示している。
この調査は、法的テキスト理解、事例検索、分析などのタスクにおけるLLMと法体系の相乗効果について考察する。
この調査では、さまざまな法律システム用に調整された微調整された法的なLLMの最新の進歩と、さまざまな言語で微調整されたLLMのための法的なデータセットが紹介されている。
論文 参考訳(メタデータ) (2024-04-01T08:35:56Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Large Language Model Alignment: A Survey [42.03229317132863]
大きな言語モデル(LLM)の潜在能力は疑いようもなく大きいが、不正確、誤解を招く、あるいは有害なテキストを生成できる。
この調査は、LLM向けに設計されたアライメント方法論を広範囲に探究する試みである。
また、モデルの解釈可能性や、敵の攻撃に対する潜在的な脆弱性など、健全な問題を調査します。
論文 参考訳(メタデータ) (2023-09-26T15:49:23Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - Domain Specialization as the Key to Make Large Language Models Disruptive: A Comprehensive Survey [100.24095818099522]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野を著しく進歩させた。
広範囲のアプリケーションに対して、非常に有用でタスクに依存しない基盤を提供する。
しかし、特定の領域における洗練された問題を解決するために直接LLMを適用することは、多くのハードルを満たす。
論文 参考訳(メタデータ) (2023-05-30T03:00:30Z) - Auditing large language models: a three-layered approach [0.0]
大規模言語モデル(LLM)は人工知能(AI)研究における大きな進歩を表している。
LLMはまた、重大な倫理的・社会的課題と結びついている。
これまでの研究は、監査を有望なガバナンスメカニズムとして取り上げてきた。
論文 参考訳(メタデータ) (2023-02-16T18:55:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。