Three Quantization Regimes for ReLU Networks
- URL: http://arxiv.org/abs/2405.01952v1
- Date: Fri, 3 May 2024 09:27:31 GMT
- Title: Three Quantization Regimes for ReLU Networks
- Authors: Weigutian Ou, Philipp Schenkel, Helmut Bölcskei,
- Abstract summary: We establish the fundamental limits in the approximation of Lipschitz functions by deep ReLU neural networks with finite-precision weights.
In the proper-quantization regime, neural networks exhibit memory-optimality in the approximation of Lipschitz functions.
- Score: 3.823356975862005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish the fundamental limits in the approximation of Lipschitz functions by deep ReLU neural networks with finite-precision weights. Specifically, three regimes, namely under-, over-, and proper quantization, in terms of minimax approximation error behavior as a function of network weight precision, are identified. This is accomplished by deriving nonasymptotic tight lower and upper bounds on the minimax approximation error. Notably, in the proper-quantization regime, neural networks exhibit memory-optimality in the approximation of Lipschitz functions. Deep networks have an inherent advantage over shallow networks in achieving memory-optimality. We also develop the notion of depth-precision tradeoff, showing that networks with high-precision weights can be converted into functionally equivalent deeper networks with low-precision weights, while preserving memory-optimality. This idea is reminiscent of sigma-delta analog-to-digital conversion, where oversampling rate is traded for resolution in the quantization of signal samples. We improve upon the best-known ReLU network approximation results for Lipschitz functions and describe a refinement of the bit extraction technique which could be of independent general interest.
Related papers
- Covering Numbers for Deep ReLU Networks with Applications to Function Approximation and Nonparametric Regression [4.297070083645049]
We develop tight (up to a multiplicative constant) lower and upper bounds on the covering numbers of fully-connected networks.
Thanks to the tightness of the bounds, a fundamental understanding of the impact of sparsity, quantization, bounded vs. unbounded weights, and network output truncation can be developed.
arXiv Detail & Related papers (2024-10-08T21:23:14Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Automatic Network Adaptation for Ultra-Low Uniform-Precision
Quantization [6.1664476076961146]
Uniform-precision neural network quantization has gained popularity since it simplifies densely packed arithmetic unit for high computing capability.
It ignores heterogeneous sensitivity to the impact of quantization errors across the layers, resulting in sub-optimal inference.
This work proposes a novel neural architecture search called neural channel expansion that adjusts the network structure to alleviate accuracy degradation from ultra-low uniform-precision quantization.
arXiv Detail & Related papers (2022-12-21T09:41:25Z) - Approximation speed of quantized vs. unquantized ReLU neural networks
and beyond [0.0]
We consider general approximation families encompassing ReLU neural networks.
We use $infty$-encodability to guarantee that ReLU networks can be uniformly quantized.
We also prove that ReLU networks share a common limitation with many other approximation families.
arXiv Detail & Related papers (2022-05-24T07:48:12Z) - Chordal Sparsity for Lipschitz Constant Estimation of Deep Neural
Networks [77.82638674792292]
Lipschitz constants of neural networks allow for guarantees of robustness in image classification, safety in controller design, and generalizability beyond the training data.
As calculating Lipschitz constants is NP-hard, techniques for estimating Lipschitz constants must navigate the trade-off between scalability and accuracy.
In this work, we significantly push the scalability frontier of a semidefinite programming technique known as LipSDP while achieving zero accuracy loss.
arXiv Detail & Related papers (2022-04-02T11:57:52Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
Certified robustness is a desirable property for deep neural networks in safety-critical applications.
We show that our method consistently outperforms state-of-the-art methods on MNIST and TinyNet datasets.
arXiv Detail & Related papers (2021-11-02T06:44:10Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
Implicit neural networks show improved accuracy and significant reduction in memory consumption.
They can suffer from ill-posedness and convergence instability.
This paper provides a new framework to design well-posed and robust implicit neural networks.
arXiv Detail & Related papers (2021-06-06T18:05:02Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z) - Mixed-Precision Quantized Neural Network with Progressively Decreasing
Bitwidth For Image Classification and Object Detection [21.48875255723581]
A mixed-precision quantized neural network with progressively ecreasing bitwidth is proposed to improve the trade-off between accuracy and compression.
Experiments on typical network architectures and benchmark datasets demonstrate that the proposed method could achieve better or comparable results.
arXiv Detail & Related papers (2019-12-29T14:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.