論文の概要: A Sonar-based AUV Positioning System for Underwater Environments with Low Infrastructure Density
- arxiv url: http://arxiv.org/abs/2405.01971v1
- Date: Fri, 3 May 2024 09:53:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 13:25:40.787543
- Title: A Sonar-based AUV Positioning System for Underwater Environments with Low Infrastructure Density
- Title(参考訳): インフラ密度の低い水中環境のためのソナー型AUV測位システム
- Authors: Emilio Olivastri, Daniel Fusaro, Wanmeng Li, Simone Mosco, Alberto Pretto,
- Abstract要約: 本研究では,人為的資産の分散分布を考慮したAUV(Autonomous Underwater Vehicles)のための,新しいリアルタイムソナーベースグローバル位置決めアルゴリズムを提案する。
実水中植物に類似した模擬環境下での予備実験は有望な結果をもたらした。
- 参考スコア(独自算出の注目度): 2.423370951696279
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing demand for underwater vehicles highlights the necessity for robust localization solutions in inspection missions. In this work, we present a novel real-time sonar-based underwater global positioning algorithm for AUVs (Autonomous Underwater Vehicles) designed for environments with a sparse distribution of human-made assets. Our approach exploits two synergistic data interpretation frontends applied to the same stream of sonar data acquired by a multibeam Forward-Looking Sonar (FSD). These observations are fused within a Particle Filter (PF) either to weigh more particles that belong to high-likelihood regions or to solve symmetric ambiguities. Preliminary experiments carried out on a simulated environment resembling a real underwater plant provided promising results. This work represents a starting point towards future developments of the method and consequent exhaustive evaluations also in real-world scenarios.
- Abstract(参考訳): 水中車両の需要の増加は、検査ミッションにおけるロバストなローカライゼーションソリューションの必要性を浮き彫りにしている。
本研究では,人為的資産の分散分布を考慮したAUV(Autonomous Underwater Vehicles)のための,新しいリアルタイムソナーベース水中測位アルゴリズムを提案する。
提案手法は,マルチビームフォワード・ルック・ソナー(FSD)が取得したソナーデータの同一ストリームに適用した2つの相乗的データ解釈フロントエンドを利用する。
これらの観測は粒子フィルター(PF)内で融合され、高配位領域に属する粒子の量を増やすか、対称的なあいまいさを解決する。
実水中植物に類似した模擬環境下での予備実験は有望な結果をもたらした。
本研究は,本手法の今後の発展に向けての出発点であり,実世界のシナリオにおいても徹底的な評価がなされている。
関連論文リスト
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - FAFA: Frequency-Aware Flow-Aided Self-Supervision for Underwater Object Pose Estimation [65.01601309903971]
無人水中車両(UUV)の6次元ポーズ推定のための周波数認識フロー支援フレームワークであるFAFAを紹介する。
我々のフレームワークは、3DモデルとRGB画像のみに依存しており、実際のポーズアノテーションや奥行きのような非モダリティデータの必要性を軽減しています。
本研究では,一般的な水中オブジェクトポーズベンチマークにおけるFAFAの有効性を評価し,最先端手法と比較して顕著な性能向上を示した。
論文 参考訳(メタデータ) (2024-09-25T03:54:01Z) - TanDepth: Leveraging Global DEMs for Metric Monocular Depth Estimation in UAVs [5.6168844664788855]
本研究は,推定時間における相対的推定値から計量深度値を求めるための,実践的なオンラインスケール回復手法であるTanDepthを提案する。
本手法は無人航空機(UAV)の用途に応用され,GDEM(Global Digital Elevation Models)のスパース計測をカメラビューに投影することで活用する。
推定深度マップから接地点を選択して、投影された基準点と相関するクラスシミュレーションフィルタへの適応を示す。
論文 参考訳(メタデータ) (2024-09-08T15:54:43Z) - Metrically Scaled Monocular Depth Estimation through Sparse Priors for
Underwater Robots [0.0]
三角特徴量からのスパース深度測定を融合して深度予測を改善する深度学習モデルを定式化する。
このネットワークは、前方に見える水中データセットFLSeaで教師ありの方法で訓練されている。
この方法は、ラップトップGPUで160FPS、単一のCPUコアで7FPSで実行することで、リアルタイムのパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-10-25T16:32:31Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Online Stochastic Variational Gaussian Process Mapping for Large-Scale
SLAM in Real Time [1.3387004254920498]
AUVは、科学と産業の両方の分野で、水中探査と海底マッピングの標準ツールになりつつある。
潜水能力は浮き彫りで、船体に近づきにくい地域まで到達し、海底に近いデータを収集することができる。
ナビゲーションの自律性は、その世界位置の死亡推定(DR)の正確さによって制限され続けており、地域とGPS信号の事前マップが欠如しているため、著しく制限されている。
論文 参考訳(メタデータ) (2022-11-10T14:21:48Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
本研究では,深海や地球外地形などの極端な環境下で得られた画像の列から,カメラのポーズを確実に推定する手法を提案する。
本手法は,室内ベンチマーク (7-Scenes データセット) における最先端手法と同等の性能を20%のトレーニングデータで達成する。
論文 参考訳(メタデータ) (2022-07-13T16:40:02Z) - Underwater Object Classification and Detection: first results and open
challenges [1.1549572298362782]
本研究は,水中環境における物体検出の問題点を概観する。
我々は、従来の最先端(SOTA)アルゴリズムの欠点を分析し、定量化する。
論文 参考訳(メタデータ) (2022-01-04T04:54:08Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。