論文の概要: Joint sentiment analysis of lyrics and audio in music
- arxiv url: http://arxiv.org/abs/2405.01988v1
- Date: Fri, 3 May 2024 10:42:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 13:15:51.318063
- Title: Joint sentiment analysis of lyrics and audio in music
- Title(参考訳): 音楽における歌詞と音声の同時感情分析
- Authors: Lea Schaab, Anna Kruspe,
- Abstract要約: 自動分析では、実際の音声データは通常分析されるが、歌詞は気分の知覚において重要な役割を果たす。
我々はまず、歌詞と音声に基づいて感情分析の様々なモデルを評価する。それに対応するアプローチは、すでに満足できる結果を示しているが、弱みも示している。
- 参考スコア(独自算出の注目度): 1.2349562761400057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentiment or mood can express themselves on various levels in music. In automatic analysis, the actual audio data is usually analyzed, but the lyrics can also play a crucial role in the perception of moods. We first evaluate various models for sentiment analysis based on lyrics and audio separately. The corresponding approaches already show satisfactory results, but they also exhibit weaknesses, the causes of which we examine in more detail. Furthermore, different approaches to combining the audio and lyrics results are proposed and evaluated. Considering both modalities generally leads to improved performance. We investigate misclassifications and (also intentional) contradictions between audio and lyrics sentiment more closely, and identify possible causes. Finally, we address fundamental problems in this research area, such as high subjectivity, lack of data, and inconsistency in emotion taxonomies.
- Abstract(参考訳): 感覚や気分は音楽の様々なレベルにおいて表現することができる。
自動分析では、実際の音声データは通常分析されるが、歌詞は気分の知覚において重要な役割を果たす。
まず,歌詞と音声を別々に評価し,感情分析のモデルについて検討した。
対応するアプローチは、すでに満足な結果を示しているが、弱点も示しており、その原因についてはより詳細に調べている。
さらに,音声と歌詞を併用する様々な手法を提案し,評価した。
両方のモダリティを考慮すると、一般的にパフォーマンスが向上します。
音声と歌詞の感情の誤分類と(意図的な)矛盾について,より深く検討し,その原因を明らかにする。
最後に、この研究領域における主観性、データの欠如、感情分類学における矛盾といった根本的な問題に対処する。
関連論文リスト
- You Shall Know a Tool by the Traces it Leaves: The Predictability of Sentiment Analysis Tools [74.98850427240464]
感情分析ツールが同じデータセットで一致しないことを示す。
感傷的アノテーションに使用される感情ツールは,その結果から予測できることを示す。
論文 参考訳(メタデータ) (2024-10-18T17:27:38Z) - Lyrically Speaking: Exploring the Link Between Lyrical Emotions, Themes and Depression Risk [2.0784944581469205]
特定の歌詞のテーマや感情は、リスナーの既存の否定状態を強化する可能性がある。
うつ病のリスクのある人は、低い原子価と低い覚醒に関連する歌詞の歌を好む。
本研究は、個人のデジタルフットプリントからうつ病リスクを評価するアプローチの可能性を明らかにする。
論文 参考訳(メタデータ) (2024-08-28T07:00:19Z) - MeLFusion: Synthesizing Music from Image and Language Cues using Diffusion Models [57.47799823804519]
私たちは、ミュージシャンが映画の脚本だけでなく、視覚化を通して音楽を作る方法にインスピレーションを受けています。
本稿では,テキスト記述と対応する画像からの手がかりを効果的に利用して音楽を合成するモデルであるMeLFusionを提案する。
音楽合成パイプラインに視覚情報を加えることで、生成した音楽の質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-06-07T06:38:59Z) - Exploring and Applying Audio-Based Sentiment Analysis in Music [0.0]
音楽的感情を解釈する計算モデルの能力は、ほとんど解明されていない。
本研究は,(1)音楽クリップの感情を時間とともに予測し,(2)時系列の次の感情値を決定し,シームレスな遷移を保証することを目的とする。
論文 参考訳(メタデータ) (2024-02-22T22:34:06Z) - Exploring the Emotional Landscape of Music: An Analysis of Valence
Trends and Genre Variations in Spotify Music Data [0.0]
本稿ではSpotifyの音楽データを用いた音楽感情と傾向の複雑な分析を行う。
回帰モデル、時間分析、気分遷移、ジャンル調査を応用し、音楽と感情の関係のパターンを明らかにする。
論文 参考訳(メタデータ) (2023-10-29T15:57:31Z) - Multimodal Lyrics-Rhythm Matching [0.0]
本稿では,歌詞と音楽のキーコンポーネントを相互にマッチングする,新しいマルチモーダルな歌詞・リズムマッチング手法を提案する。
楽譜の代わりに音声を使用し、メタデータを手軽に利用できるようにし、より多くの課題を生み出しますが、我々の手法の適用柔軟性は向上します。
実験の結果,平均一致確率は0.81であり,曲の約30%は強拍に着地するキーワードの0.9以上の確率を持つことがわかった。
論文 参考訳(メタデータ) (2023-01-06T22:24:53Z) - Affective Idiosyncratic Responses to Music [63.969810774018775]
本研究では,中国社会音楽プラットフォーム上での403万以上のリスナーコメントから,音楽に対する感情応答を測定する手法を開発した。
我々は,聴取者の感情反応を促進する音楽的,歌詞的,文脈的,人口動態的,精神的健康的効果をテストした。
論文 参考訳(メタデータ) (2022-10-17T19:57:46Z) - Song Emotion Recognition: a Performance Comparison Between Audio
Features and Artificial Neural Networks [0.0]
この問題に対処するために使用される最も一般的な特徴とモデルについて検討し、カペラの歌で感情を認識するのに適したものを明らかにする。
本稿では,この課題に対処するために,近年の出版物で用いられている最も一般的な特徴とモデルについて検討し,カペラ歌の感情認識に最も適しているものについて述べる。
論文 参考訳(メタデータ) (2022-09-24T16:13:25Z) - Causal Intervention Improves Implicit Sentiment Analysis [67.43379729099121]
インスツルメンタル・バリアブル(ISAIV)を用いたインシシット・センシティメント分析のための因果介入モデルを提案する。
まず、因果的視点から感情分析をレビューし、このタスクに存在する共同設立者を分析する。
そこで本研究では,文章と感情の因果関係を解消し,純粋因果関係を抽出するインストゥルメンタル変数を提案する。
論文 参考訳(メタデータ) (2022-08-19T13:17:57Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
我々は,過去20年間の情緒的イメージコンテンツ分析(AICA)の発展を包括的にレビューする。
我々は、感情的ギャップ、知覚主観性、ラベルノイズと欠如という3つの主要な課題に関して、最先端の手法に焦点を当てる。
画像の内容やコンテキスト理解,グループ感情クラスタリング,ビューアーとイメージのインタラクションなど,今後の課題や研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-06-30T15:20:56Z) - A Deep Neural Framework for Contextual Affect Detection [51.378225388679425]
感情を持たない短い単純なテキストは、その文脈と共に読むときに強い感情を表現することができる。
文中の単語の相互依存を学習する文脈影響検出フレームワークを提案する。
論文 参考訳(メタデータ) (2020-01-28T05:03:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。