論文の概要: Adversarial Botometer: Adversarial Analysis for Social Bot Detection
- arxiv url: http://arxiv.org/abs/2405.02016v1
- Date: Fri, 3 May 2024 11:28:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 13:05:54.631693
- Title: Adversarial Botometer: Adversarial Analysis for Social Bot Detection
- Title(参考訳): 対人ボットメーター:社会ボット検出のための対人分析
- Authors: Shaghayegh Najari, Davood Rafiee, Mostafa Salehi, Reza Farahbakhsh,
- Abstract要約: ソーシャルボットは人間の創造性を模倣するコンテンツを制作する。
悪意のあるソーシャルボットは、非現実的なコンテンツで人々を騙すようになる。
テキストベースのボット検出器の動作を競合環境下で評価する。
- 参考スコア(独自算出の注目度): 1.9280536006736573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social bots play a significant role in many online social networks (OSN) as they imitate human behavior. This fact raises difficult questions about their capabilities and potential risks. Given the recent advances in Generative AI (GenAI), social bots are capable of producing highly realistic and complex content that mimics human creativity. As the malicious social bots emerge to deceive people with their unrealistic content, identifying them and distinguishing the content they produce has become an actual challenge for numerous social platforms. Several approaches to this problem have already been proposed in the literature, but the proposed solutions have not been widely evaluated. To address this issue, we evaluate the behavior of a text-based bot detector in a competitive environment where some scenarios are proposed: \textit{First}, the tug-of-war between a bot and a bot detector is examined. It is interesting to analyze which party is more likely to prevail and which circumstances influence these expectations. In this regard, we model the problem as a synthetic adversarial game in which a conversational bot and a bot detector are engaged in strategic online interactions. \textit{Second}, the bot detection model is evaluated under attack examples generated by a social bot; to this end, we poison the dataset with attack examples and evaluate the model performance under this condition. \textit{Finally}, to investigate the impact of the dataset, a cross-domain analysis is performed. Through our comprehensive evaluation of different categories of social bots using two benchmark datasets, we were able to demonstrate some achivement that could be utilized in future works.
- Abstract(参考訳): ソーシャルボットは多くのオンラインソーシャルネットワーク(OSN)において、人間の行動の模倣として重要な役割を果たす。
この事実は、その能力と潜在的なリスクに関する難しい疑問を引き起こします。
Generative AI(GenAI)の最近の進歩を踏まえると、ソーシャルボットは人間の創造性を模倣する非常に現実的で複雑なコンテンツを生成できる。
悪意のあるソーシャルボットが、非現実的なコンテンツで人々を騙すようになると、それらを特定し、彼らが作り出すコンテンツを区別することは、多くのソーシャルプラットフォームにとって現実的な課題となっている。
この問題に対するいくつかのアプローチはすでに文献で提案されているが、提案された解決策は広く評価されていない。
そこで本研究では,テキストベースのボット検出器の動作を,いくつかのシナリオが提案される競合環境において評価する。
どちらが優勢で、どの状況がこれらの期待に影響を及ぼすかを分析することは興味深い。
本稿では,対話型ボットとボット検出装置が戦略的オンラインインタラクションに従事している合成逆ゲームとして,この問題をモデル化する。
ボット検出モデルは、ソーシャルボットが生成した攻撃例に基づいて評価され、最終的には、攻撃例でデータセットを汚染し、この条件下でのモデル性能を評価する。
データセットの影響を調べるために、クロスドメイン分析を行う。
2つのベンチマークデータセットを用いて、ソーシャルボットのカテゴリを総合的に評価することで、今後の研究で活用できる成果を実演することができた。
関連論文リスト
- SeBot: Structural Entropy Guided Multi-View Contrastive Learning for Social Bot Detection [34.68635583099056]
マルチビューグラフに基づくコントラスト学習型ソーシャルボット検出器SEBotを提案する。
特に、構造エントロピーを不確実性計量として使用して、グラフ全体の構造を最適化する。
そして、ホモフィリーな仮定を超えたメッセージパッシングを可能にするエンコーダを設計する。
論文 参考訳(メタデータ) (2024-05-18T08:16:11Z) - BotSSCL: Social Bot Detection with Self-Supervised Contrastive Learning [6.317191658158437]
自己監督型コントラスト学習(BotSSCL)を用いたソーシャルボット検出のための新しいフレームワークを提案する。
BotSSCLは対照的な学習を用いて、埋め込み空間におけるソーシャルボットと人間を区別し、線形分離性を改善する。
ボットアカウントの操作による検出回避に対するBotSSCLの堅牢性を示す。
論文 参考訳(メタデータ) (2024-02-06T06:13:13Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - My Brother Helps Me: Node Injection Based Adversarial Attack on Social Bot Detection [69.99192868521564]
Twitterのようなソーシャルプラットフォームは、数多くの不正なユーザーから包囲されている。
ソーシャルネットワークの構造のため、ほとんどの手法は攻撃を受けやすいグラフニューラルネットワーク(GNN)に基づいている。
本稿では,ボット検出モデルを欺いたノードインジェクションに基づく逆攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-10-11T03:09:48Z) - BotArtist: Generic approach for bot detection in Twitter via semi-automatic machine learning pipeline [47.61306219245444]
Twitterは、ボットや偽アカウントのターゲットとなり、偽情報や操作の拡散につながった。
本稿では,機械学習モデル開発に関連する課題に対処するために,セミオートマチック機械学習パイプライン(SAMLP)を提案する。
ユーザプロファイル機能に基づいたボット検出モデルBotArtistを開発した。
論文 参考訳(メタデータ) (2023-05-31T09:12:35Z) - BotShape: A Novel Social Bots Detection Approach via Behavioral Patterns [4.386183132284449]
実世界のデータセットに基づいて、生のイベントログから行動シーケンスを構築する。
ボットと真のユーザの違いと、ボットアカウント間の類似パターンを観察する。
本稿では,行動の順序や特徴を自動的に把握するソーシャルボット検出システムBotShapeを提案する。
論文 参考訳(メタデータ) (2023-03-17T19:03:06Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Investigating the Validity of Botometer-based Social Bot Studies [0.0]
ソーシャルボットは、世論を操作することを目的として悪意あるアクターが運営するソーシャルメディアアカウントの自動化だと考えられている。
社会ボットの活動は、アメリカ合衆国大統領選挙を含む様々な政治的文脈で報告されている。
ソーシャルボットの普及率を推定するために広く利用されている研究設計の根本的な欠点を指摘する。
論文 参考訳(メタデータ) (2022-07-23T09:31:30Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Bot-Match: Social Bot Detection with Recursive Nearest Neighbors Search [9.457368716414079]
ソーシャルボットはこの10年で出現し、最初は迷惑をかけたが、最近ではジャーナリストを威圧し、選挙イベントを妨害し、既存のソーシャル・ファイジャーを悪化させた。
この社会的脅威により、ボット検出アルゴリズムが進化して、ますます高度なボットアカウントに追いつくために進化する、ボット検出アルゴリズムが誕生した。
このギャップは、研究者、ジャーナリスト、アナリストが、最先端の監視ボット検出アルゴリズムによって検出されていない悪意のあるボットアカウントを毎日特定することを意味している。
類似性に基づくアルゴリズムは、既存の教師なしおよび教師なしの手法を補完し、このギャップを埋めることができる。
論文 参考訳(メタデータ) (2020-07-15T11:48:24Z) - Detection of Novel Social Bots by Ensembles of Specialized Classifiers [60.63582690037839]
悪意ある俳優は、社会ボットとして知られるアルゴリズムによって部分的に制御される不正なソーシャルメディアアカウントを作成し、誤情報を広め、オンラインでの議論を扇動する。
異なるタイプのボットが、異なる行動特徴によって特徴づけられることを示す。
本稿では,ボットのクラスごとに専門的な分類器を訓練し,それらの決定を最大ルールで組み合わせる,教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-11T22:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。