論文の概要: Towards general deep-learning-based tree instance segmentation models
- arxiv url: http://arxiv.org/abs/2405.02061v1
- Date: Fri, 3 May 2024 12:42:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:55:53.317115
- Title: Towards general deep-learning-based tree instance segmentation models
- Title(参考訳): 総合的なディープラーニングに基づく木インスタンスセグメンテーションモデルに向けて
- Authors: Jonathan Henrich, Jan van Delden,
- Abstract要約: 木を分割する学習の可能性を示す深層学習法が提案されている。
文献で見られる7つの多様なデータセットを使用して、ドメインシフトの下での一般化能力に関する洞察を得る。
その結果, 針葉樹が支配するスパース点雲から決定的に支配する高分解能点雲への一般化が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The segmentation of individual trees from forest point clouds is a crucial task for downstream analyses such as carbon sequestration estimation. Recently, deep-learning-based methods have been proposed which show the potential of learning to segment trees. Since these methods are trained in a supervised way, the question arises how general models can be obtained that are applicable across a wide range of settings. So far, training has been mainly conducted with data from one specific laser scanning type and for specific types of forests. In this work, we train one segmentation model under various conditions, using seven diverse datasets found in literature, to gain insights into the generalization capabilities under domain-shift. Our results suggest that a generalization from coniferous dominated sparse point clouds to deciduous dominated high-resolution point clouds is possible. Conversely, qualitative evidence suggests that generalization from high-resolution to low-resolution point clouds is challenging. This emphasizes the need for forest point clouds with diverse data characteristics for model development. To enrich the available data basis, labeled trees from two previous works were propagated to the complete forest point cloud and are made publicly available at https://doi.org/10.25625/QUTUWU.
- Abstract(参考訳): 森林点雲からの個々の木々の分断は,炭素沈降推定などの下流分析にとって重要な課題である。
近年,木を分割する学習の可能性を示すディープラーニングに基づく手法が提案されている。
これらの手法は教師付き方式で訓練されているため、様々な設定に適用可能な一般的なモデルがどうやって得られるのかという疑問が生じる。
これまでのところ、トレーニングは主に特定のレーザー走査型と特定の種類の森林のデータを用いて行われてきた。
本研究では、文献に見られる7つの多様なデータセットを用いて、様々な条件下で1つのセグメンテーションモデルを訓練し、ドメインシフトの下での一般化能力に関する洞察を得る。
その結果, 針葉樹が支配するスパース点雲から決定的に支配する高分解能点雲への一般化が可能であることが示唆された。
逆に質的な証拠は、高解像度から低解像度の点雲への一般化が難しいことを示唆している。
これは、モデル開発に多様なデータ特性を持つフォレストポイントクラウドの必要性を強調している。
利用可能なデータ基盤を強化するため、以前の2つの作品のラベル付きツリーは完全な森林点クラウドに伝播され、https://doi.org/10.25625/QUTUWUで公開されている。
関連論文リスト
- Forest Inspection Dataset for Aerial Semantic Segmentation and Depth
Estimation [6.635604919499181]
森林調査のための大規模航空データセットを新たに導入する。
現実世界と仮想的な自然環境の記録も含んでいる。
地域の森林破壊度を評価するための枠組みを開発する。
論文 参考訳(メタデータ) (2024-03-11T11:26:44Z) - SegmentAnyTree: A sensor and platform agnostic deep learning model for
tree segmentation using laser scanning data [15.438892555484616]
本研究は,様々なレーザー走査型に適用可能な深層学習モデルを用いて,ライダーデータにおけるツリークラウン(ITC)セグメンテーションを推し進める。
3次元森林景観解析におけるデータ特性の相違による伝達可能性の課題に対処する。
PointGroupアーキテクチャに基づくこのモデルは、セマンティックとインスタンスセグメンテーションのための別々のヘッドを持つ3D CNNである。
論文 参考訳(メタデータ) (2024-01-28T19:47:17Z) - Automated forest inventory: analysis of high-density airborne LiDAR
point clouds with 3D deep learning [16.071397465972893]
ForAINetは多様な森林タイプや地理的地域をまたいでセグメンテーションを行うことができる。
システムは、調査ドローンを使用して5つの国で取得されたポイントクラウドのデータセットであるFor-Instanceでテストされている。
論文 参考訳(メタデータ) (2023-12-22T21:54:35Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
森林点雲のツリーインスタンスセグメンテーションのためのディープラーニングに基づくアプローチであるTreeLearnを提案する。
TreeLearnは、すでにセグメンテーションされたポイントクラウドにデータ駆動でトレーニングされているため、事前に定義された機能やアルゴリズムに依存しない。
我々は、Lidar360ソフトウェアを使って6665本の木の森林点雲上でTreeLearnを訓練した。
論文 参考訳(メタデータ) (2023-09-15T15:20:16Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Effective Utilisation of Multiple Open-Source Datasets to Improve
Generalisation Performance of Point Cloud Segmentation Models [0.0]
航空点雲データのセマンティックセグメンテーションは、地面、建物、植生などのクラスに属するポイントを区別するために利用することができる。
ドローンや飛行機に搭載された空中センサーから発生する点雲は、LIDARセンサーやカメラと光度計を利用することができる。
そこで本研究では,データセットの単純な組み合わせが,期待通りに一般化性能を向上したモデルを生成することを示す。
論文 参考訳(メタデータ) (2022-11-29T02:31:01Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
そこで本研究では,自己監督型および倍率フレキシブルな点雲を同時にアップサンプリングする手法を提案する。
実験結果から, 自己教師あり学習に基づく手法は, 教師あり学習に基づく手法よりも, 競争力や性能が向上することが示された。
論文 参考訳(メタデータ) (2022-04-18T07:18:25Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - Cascaded Refinement Network for Point Cloud Completion with
Self-supervision [74.80746431691938]
形状整形のための2分岐ネットワークを提案する。
第1分枝は、完全なオブジェクトを合成するためのカスケード形状補完サブネットワークである。
第2のブランチは、元の部分入力を再構築する自動エンコーダである。
論文 参考訳(メタデータ) (2020-10-17T04:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。