論文の概要: Forest Inspection Dataset for Aerial Semantic Segmentation and Depth
Estimation
- arxiv url: http://arxiv.org/abs/2403.06621v1
- Date: Mon, 11 Mar 2024 11:26:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:24:27.889704
- Title: Forest Inspection Dataset for Aerial Semantic Segmentation and Depth
Estimation
- Title(参考訳): 航空セマンティックセグメンテーションのための森林検査データセットと深さ推定
- Authors: Bianca-Cerasela-Zelia Blaga and Sergiu Nedevschi
- Abstract要約: 森林調査のための大規模航空データセットを新たに導入する。
現実世界と仮想的な自然環境の記録も含んでいる。
地域の森林破壊度を評価するための枠組みを開発する。
- 参考スコア(独自算出の注目度): 6.635604919499181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans use UAVs to monitor changes in forest environments since they are
lightweight and provide a large variety of surveillance data. However, their
information does not present enough details for understanding the scene which
is needed to assess the degree of deforestation. Deep learning algorithms must
be trained on large amounts of data to output accurate interpretations, but
ground truth recordings of annotated forest imagery are not available. To solve
this problem, we introduce a new large aerial dataset for forest inspection
which contains both real-world and virtual recordings of natural environments,
with densely annotated semantic segmentation labels and depth maps, taken in
different illumination conditions, at various altitudes and recording angles.
We test the performance of two multi-scale neural networks for solving the
semantic segmentation task (HRNet and PointFlow network), studying the impact
of the various acquisition conditions and the capabilities of transfer learning
from virtual to real data. Our results showcase that the best results are
obtained when the training is done on a dataset containing a large variety of
scenarios, rather than separating the data into specific categories. We also
develop a framework to assess the deforestation degree of an area.
- Abstract(参考訳): 人間はUAVを使って森林環境の変化を監視します。
しかし,森林破壊の程度を評価するのに必要な状況を理解するには,これらの情報は不十分である。
深層学習アルゴリズムは、正確な解釈を出力するために大量のデータに基づいて訓練する必要があるが、注釈付き森林画像の真実記録は利用できない。
そこで本研究では,自然環境の実世界記録と仮想記録の両方を含む森林調査用大規模空中データセットを,異なる照明条件において異なる高度と記録角度で,密に注釈付き意味セグメンテーションラベルと深度マップを用いて紹介する。
セマンティクスセグメンテーションタスク(hrnetとpointflow network)を解決するために、2つのマルチスケールニューラルネットワークの性能をテストし、様々な獲得条件の影響と、仮想データから実データへの学習能力について検討した。
以上の結果から,トレーニングの結果は,データを特定のカテゴリに分割するのではなく,多種多様なシナリオを含むデータセット上で得られることが判明した。
また,森林破壊の程度を評価する枠組みも開発している。
関連論文リスト
- Towards general deep-learning-based tree instance segmentation models [0.0]
木を分割する学習の可能性を示す深層学習法が提案されている。
文献で見られる7つの多様なデータセットを使用して、ドメインシフトの下での一般化能力に関する洞察を得る。
その結果, 針葉樹が支配するスパース点雲から決定的に支配する高分解能点雲への一般化が可能であることが示唆された。
論文 参考訳(メタデータ) (2024-05-03T12:42:43Z) - Training point-based deep learning networks for forest segmentation with synthetic data [0.0]
我々は,人工林のシーンを手続き的に生成する現実的なシミュレータを開発した。
森林分断のための最先端の深層学習ネットワークの比較研究を行った。
論文 参考訳(メタデータ) (2024-03-21T04:01:26Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
教師なし学習の最近の進歩は、下流タスクにおける有望な結果を達成するための大きな視覚モデルの可能性を示している。
このような事前学習技術は、大量の未学習データが利用可能であることから、リモートセンシング領域でも最近研究されている。
本稿では,マルチモーダルで効果的に活用されるマルチスケール情報の事前学習と活用について述べる。
論文 参考訳(メタデータ) (2024-03-08T16:18:04Z) - SegmentAnyTree: A sensor and platform agnostic deep learning model for
tree segmentation using laser scanning data [15.438892555484616]
本研究は,様々なレーザー走査型に適用可能な深層学習モデルを用いて,ライダーデータにおけるツリークラウン(ITC)セグメンテーションを推し進める。
3次元森林景観解析におけるデータ特性の相違による伝達可能性の課題に対処する。
PointGroupアーキテクチャに基づくこのモデルは、セマンティックとインスタンスセグメンテーションのための別々のヘッドを持つ3D CNNである。
論文 参考訳(メタデータ) (2024-01-28T19:47:17Z) - FOR-instance: a UAV laser scanning benchmark dataset for semantic and
instance segmentation of individual trees [0.06597195879147556]
FOR-instanceデータセットは、5つのキュレートされ、ML対応のUAVベースのレーザースキャンデータコレクションから構成される。
データセットは開発サブセットとテストサブセットに分割され、メソッドの進歩と評価が可能になる。
乳房高さデータへの直径の挿入は、古典的な木の変数の測定にその有用性を広げる。
論文 参考訳(メタデータ) (2023-09-03T22:08:29Z) - Do More With What You Have: Transferring Depth-Scale from Labeled to Unlabeled Domains [43.16293941978469]
自己教師付き深度推定器は、ドメイン全体の絶対深度値と線形に相関する大規模予測をもたらす。
トレーニング前の2つのデータセットのフィールド・オブ・ビューの整合性は、両方のドメインに共通な線形関係をもたらすことを示す。
観測された特性を用いて、絶対深度ラベルを持つソースデータセットから、これらの測定を欠いた新しいターゲットデータセットへ、深度スケールを転送する。
論文 参考訳(メタデータ) (2023-03-14T07:07:34Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
新しいデザイン(De Detection Hubという名前)は、データセット認識とカテゴリ整列である。
データセットの不整合を緩和し、検出器が複数のデータセットをまたいで学習するための一貫性のあるガイダンスを提供する。
データセット間のカテゴリは、ワンホットなカテゴリ表現を単語埋め込みに置き換えることで、意味的に統一された空間に整列される。
論文 参考訳(メタデータ) (2022-06-07T17:59:44Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing
Data [70.64030011999981]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Speak2Label: Using Domain Knowledge for Creating a Large Scale Driver
Gaze Zone Estimation Dataset [55.391532084304494]
ワイルド・データセットのドライバ・ゲイズには、夕方を含む1日の異なる時間に撮影された586の録音が含まれている。
ワイルド・データセットのドライバ・ゲイズには338人の被験者がおり、年齢は18-63歳である。
論文 参考訳(メタデータ) (2020-04-13T14:47:34Z) - Laplacian Denoising Autoencoder [114.21219514831343]
本稿では,新しいタイプの自動符号化器を用いてデータ表現を学習することを提案する。
勾配領域における潜伏クリーンデータを破損させて雑音入力データを生成する。
いくつかのビジュアルベンチマークの実験では、提案されたアプローチでより良い表現が学べることが示されている。
論文 参考訳(メタデータ) (2020-03-30T16:52:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。