A comparative study of conformal prediction methods for valid uncertainty quantification in machine learning
- URL: http://arxiv.org/abs/2405.02082v1
- Date: Fri, 3 May 2024 13:19:33 GMT
- Title: A comparative study of conformal prediction methods for valid uncertainty quantification in machine learning
- Authors: Nicolas Dewolf,
- Abstract summary: dissertation tries to further the quest for a world where everyone is aware of uncertainty, of how important it is and how to embrace it instead of fearing it.
A specific, though general, framework that allows anyone to obtain accurate uncertainty estimates is singled out and analysed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past decades, most work in the area of data analysis and machine learning was focused on optimizing predictive models and getting better results than what was possible with existing models. To what extent the metrics with which such improvements were measured were accurately capturing the intended goal, whether the numerical differences in the resulting values were significant, or whether uncertainty played a role in this study and if it should have been taken into account, was of secondary importance. Whereas probability theory, be it frequentist or Bayesian, used to be the gold standard in science before the advent of the supercomputer, it was quickly replaced in favor of black box models and sheer computing power because of their ability to handle large data sets. This evolution sadly happened at the expense of interpretability and trustworthiness. However, while people are still trying to improve the predictive power of their models, the community is starting to realize that for many applications it is not so much the exact prediction that is of importance, but rather the variability or uncertainty. The work in this dissertation tries to further the quest for a world where everyone is aware of uncertainty, of how important it is and how to embrace it instead of fearing it. A specific, though general, framework that allows anyone to obtain accurate uncertainty estimates is singled out and analysed. Certain aspects and applications of the framework -- dubbed `conformal prediction' -- are studied in detail. Whereas many approaches to uncertainty quantification make strong assumptions about the data, conformal prediction is, at the time of writing, the only framework that deserves the title `distribution-free'. No parametric assumptions have to be made and the nonparametric results also hold without having to resort to the law of large numbers in the asymptotic regime.
Related papers
- Uncertainties of Latent Representations in Computer Vision [2.33877878310217]
This thesis makes uncertainty estimates easily accessible by adding them to the latent representation vectors of pretrained computer vision models.
We show that these unobservable uncertainties about unobservable latent representations are indeed provably correct.
arXiv Detail & Related papers (2024-08-26T14:02:30Z) - Introducing an Improved Information-Theoretic Measure of Predictive
Uncertainty [6.3398383724486544]
Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution.
We introduce a theoretically grounded measure to overcome these limitations.
We find that our introduced measure behaves more reasonably in controlled synthetic tasks.
arXiv Detail & Related papers (2023-11-14T16:55:12Z) - Model-free generalized fiducial inference [0.0]
I propose and develop ideas for a model-free statistical framework for imprecise probabilistic prediction inference.
This framework facilitates uncertainty quantification in the form of prediction sets that offer finite sample control of type 1 errors.
I consider the theoretical and empirical properties of a precise probabilistic approximation to the model-free imprecise framework.
arXiv Detail & Related papers (2023-07-24T01:58:48Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
This work aims to assess how well a model performs under distribution shifts without using labels.
We use the nuclear norm that has been shown to be effective in characterizing both properties.
We show that the nuclear norm is more accurate and robust in accuracy than existing methods.
arXiv Detail & Related papers (2023-02-02T13:30:48Z) - Comparison of Uncertainty Quantification with Deep Learning in Time
Series Regression [7.6146285961466]
In this paper, different uncertainty estimation methods are compared to forecast meteorological time series data.
Results show how each uncertainty estimation method performs on the forecasting task.
arXiv Detail & Related papers (2022-11-11T14:29:13Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Don't Just Blame Over-parametrization for Over-confidence: Theoretical
Analysis of Calibration in Binary Classification [58.03725169462616]
We show theoretically that over-parametrization is not the only reason for over-confidence.
We prove that logistic regression is inherently over-confident, in the realizable, under-parametrized setting.
Perhaps surprisingly, we also show that over-confidence is not always the case.
arXiv Detail & Related papers (2021-02-15T21:38:09Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
We develop a frequentist procedure that utilizes influence functions of a model's loss functional to construct a jackknife (or leave-one-out) estimator of predictive confidence intervals.
The DJ satisfies (1) and (2), is applicable to a wide range of deep learning models, is easy to implement, and can be applied in a post-hoc fashion without interfering with model training or compromising its accuracy.
arXiv Detail & Related papers (2020-06-29T13:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.