論文の概要: Forecasting Ferry Passenger Flow Using Long-Short Term Memory Neural Networks
- arxiv url: http://arxiv.org/abs/2405.02098v3
- Date: Thu, 9 May 2024 12:19:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 15:21:52.189399
- Title: Forecasting Ferry Passenger Flow Using Long-Short Term Memory Neural Networks
- Title(参考訳): 長期記憶ニューラルネットワークを用いたフェリー乗客流の予測
- Authors: Daniel Fesalbon,
- Abstract要約: 本研究は,フィリピンの2港のフェリー利用者を予測するLSTMベースニューラルネットワークの能力について検討し,評価することを目的とする。
提案モデルでは,2016年から2022年までの月次旅客輸送量に基づいて,両港の旅客フロー予測の適合と評価を行う。
Keras と Scikit-learn Python ライブラリを使用して、提案した LSTM モデルの性能を合理的に予測する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent studies related to Neural Networks being used on different forecasting and time series investigations, this study aims to expand these contexts to ferry passenger traffic. The primary objective of the study is to investigate and evaluate an LSTM-based Neural Networks' capability to forecast ferry passengers of two ports in the Philippines. The proposed model's fitting and evaluation of the passenger flow forecasting of the two ports is based on monthly passenger traffic from 2016 to 2022 data that was acquired from the Philippine Ports Authority (PPA). This work uses Mean Absolute Percentage Error (MAPE) as its primary metric to evaluate the model's forecasting capability. The proposed LSTM-based Neural Networks model achieved 72% forecasting accuracy to the Batangas port ferry passenger data and 74% forecasting accuracy to the Mindoro port ferry passenger data. Using Keras and Scikit-learn Python libraries, this work concludes a reasonable forecasting performance of the presented LSTM model. Aside from these notable findings, this study also recommends further investigation and studies on employing other statistical, machine learning, and deep learning methods on forecasting ferry passenger flows.
- Abstract(参考訳): ニューラルネットワークに関する最近の研究は、様々な予測や時系列調査に使われているが、この研究は、これらの文脈を旅客輸送に拡大することを目的としている。
本研究の主な目的は、フィリピンの2つの港のフェリー客を予測できるLSTMベースのニューラルネットワークの能力を調査し、評価することである。
提案モデルでは, フィリピン港湾庁 (PPA) から取得した2016年から2022年までの月毎の旅客交通量に基づいて, 両港の旅客フロー予測の適合と評価を行った。
この作業では、モデルの予測能力を評価するために、MAPE(Mean Absolute Percentage Error)を主要な指標として使用します。
提案したLSTMベースのニューラルネットワークモデルでは,バタンガス港フェリーの乗客データに対して72%の精度,ミンドロ港フェリーの乗客データに対して74%の精度で予測された。
Keras と Scikit-learn Python ライブラリを使用して、提案した LSTM モデルの性能を合理的に予測する。
これらの顕著な発見とは別に、本研究では、他の統計的、機械学習、深層学習手法を用いたフェリーの旅客流予測のさらなる調査と研究を推奨する。
関連論文リスト
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
この研究は、性能評価のためのより効率的な指標として、事前学習損失に焦点を当てている。
我々は、データソース間のFLOPに基づいて、ドメイン固有の事前学習損失を予測するために、電力法解析関数を拡張した。
我々は2層ニューラルネットワークを用いて、複数のドメイン固有の損失と下流性能の非線形関係をモデル化する。
論文 参考訳(メタデータ) (2024-10-11T04:57:48Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
本稿では,モデルが目標性能に達するために必要なサンプル数を推定する手法を提案する。
モデル性能を推定するデファクト原理であるパワー法則が,小さなデータセットを使用する場合の誤差が大きいことが判明した。
本稿では,2つのデータを異なる方法で処理するPPL法について紹介する。
論文 参考訳(メタデータ) (2023-03-02T21:48:22Z) - Estimation of Sea State Parameters from Ship Motion Responses Using
Attention-based Neural Networks [0.6193838300896448]
本研究では, 船舶のピッチ, ヒーブ, ロール運動の時系列データから, 海の状態パラメータを推定するための新しいアテンションベースニューラルネットワーク(AT-NN)を適用した。
改良された最先端技術による提案手法により,MSEを23%,MAEを16%削減できることが実証された。
論文 参考訳(メタデータ) (2023-01-21T13:21:50Z) - Meta-Learning over Time for Destination Prediction Tasks [53.12827614887103]
交通分野における公共目的と民間目標の両方を、車両の行動を理解し、予測する必要がある。
近年の研究では、時間情報の導入による予測性能の限界改善しか見出されていない。
本稿では、ニューラルネットワークが入力に応じて自身の重みを変えることを学習するハイパーネットワークに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-29T17:58:12Z) - Dynamical prediction of two meteorological factors using the deep neural
network and the long short term memory $(1)$ [0.0]
本研究では,既存のニューラルネットワーク法を用いて予測精度を向上させる。
シミュレーション研究は、人工ニューラルネットワーク(ANN)、ディープニューラルネットワーク(DNN)、エクストリームラーニングマシン(ELM)、ロング短期メモリ(LSTM)を適用することによって行われます。
2014年3月から2020年2月までの韓国10都市の低周波時系列からデータを抽出する。
論文 参考訳(メタデータ) (2021-01-16T16:24:24Z) - Predicting heave and surge motions of a semi-submersible with neural
networks [4.0097067208724955]
半潜水艇のヒーブ動作とサージ動作を予測するために,LSTM(Long Short-term memory)に基づく機械学習モデルを開発した。
測定波の助けを借りて、予測は46.5秒を将来まで延長し、平均精度は90%近くになった。
論文 参考訳(メタデータ) (2020-07-31T11:24:46Z) - Deep Echo State Networks for Short-Term Traffic Forecasting: Performance
Comparison and Statistical Assessment [8.586891288891263]
短期的な交通予測では、関心のある交通パラメータの将来の値を正確に予測することが目的である。
Deep Echo State Networksは、考慮されている他のモデリングモデルよりも正確なトラフィック予測を実現している。
論文 参考訳(メタデータ) (2020-04-17T11:07:25Z) - Stream-Flow Forecasting of Small Rivers Based on LSTM [3.921808417990452]
本稿では,Long-Short Term Memory(LSTM)ディープラーニングモデルを用いて,予測を行う新しい手法を提案する。
本研究は,中国湖西省の1つの水文局の河川流量データと,周辺11の降雨局の降水データを収集し,河川流量データの予測を行った。
平均二乗誤差(RMSE)、平均絶対誤差(MAE)、判定係数(R2)の3つの基準を用いて予測結果を評価した。
論文 参考訳(メタデータ) (2020-01-16T07:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。