論文の概要: Learning from Evolution: Improving Collective Decision-Making Mechanisms using Insights from Evolutionary Robotics
- arxiv url: http://arxiv.org/abs/2405.02133v1
- Date: Fri, 3 May 2024 14:37:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 12:36:11.047567
- Title: Learning from Evolution: Improving Collective Decision-Making Mechanisms using Insights from Evolutionary Robotics
- Title(参考訳): 進化から学ぶ:進化ロボティクスの洞察による集団意思決定メカニズムの改善
- Authors: Tanja Katharina Kaiser,
- Abstract要約: 集合的意思決定により、マルチロボットシステムは現実世界の環境で自律的に行動することができる。
近年の研究では、進化計算の手法を用いてより効率的な集団決定機構を創出できることが示されている。
我々は、進化した集団意思決定メカニズムを詳細に分析し、得られた知見に基づいて、2つの新たな意思決定メカニズムを手書きする。
- 参考スコア(独自算出の注目度): 2.1756081703276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collective decision-making enables multi-robot systems to act autonomously in real-world environments. Existing collective decision-making mechanisms suffer from the so-called speed versus accuracy trade-off or rely on high complexity, e.g., by including global communication. Recent work has shown that more efficient collective decision-making mechanisms based on artificial neural networks can be generated using methods from evolutionary computation. A major drawback of these decision-making neural networks is their limited interpretability. Analyzing evolved decision-making mechanisms can help us improve the efficiency of hand-coded decision-making mechanisms while maintaining a higher interpretability. In this paper, we analyze evolved collective decision-making mechanisms in detail and hand-code two new decision-making mechanisms based on the insights gained. In benchmark experiments, we show that the newly implemented collective decision-making mechanisms are more efficient than the state-of-the-art collective decision-making mechanisms voter model and majority rule.
- Abstract(参考訳): 集合的意思決定により、マルチロボットシステムは現実世界の環境で自律的に行動することができる。
既存の意思決定メカニズムは、いわゆるスピード対精度トレードオフに悩まされるか、あるいはグローバルなコミュニケーションを含めることで、高複雑性に依存している。
近年の研究では、進化計算の手法を用いて、ニューラルネットワークに基づくより効率的な集団決定機構が生成できることが示されている。
これらの意思決定ニューラルネットワークの大きな欠点は、その限定的な解釈性である。
進化した意思決定機構の分析は、より高い解釈性を維持しつつ、手作業による意思決定機構の効率を向上させるのに役立つ。
本稿では、進化した集団意思決定メカニズムを詳細に分析し、得られた知見に基づいて2つの新たな意思決定メカニズムを手書きする。
ベンチマーク実験では,新たに実装された集団意思決定機構が,最先端の集団意思決定機構である投票者モデルや多数決ルールよりも効率的であることが示されている。
関連論文リスト
- An Interpretable Automated Mechanism Design Framework with Large Language Models [26.89126917895188]
メカニズムは長い間経済理論の基盤であり、伝統的なアプローチは数学的導出に依存してきた。
支払いとアロケーションを設計するために、ニューラルネットワークを使った微分経済学を含む最近の自動化アプローチが出現している。
コード生成タスクとしてメカニズム設計を再構築する新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2025-02-16T12:33:03Z) - Trustworthy Conceptual Explanations for Neural Networks in Robot Decision-Making [9.002659157558645]
本稿では,人間に解釈可能な高レベル概念に基づく,信頼性の高い説明可能なロボット工学手法を提案する。
提案手法は、ニューラルネットワークのアクティベーションと人間の解釈可能なビジュアライゼーションをマッチングすることにより、関連する不確実性スコアを説明できる。
論文 参考訳(メタデータ) (2024-09-16T21:11:12Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Evolution of Collective Decision-Making Mechanisms for Collective
Perception [6.21540494241516]
我々は、進化計算の手法を用いて、集合的な意思決定機構を生成する。
タスク固有のフィットネス機能とハイブリッドフィットネス機能だけが、集合的意思決定行動の出現に繋がることを示す。
論文 参考訳(メタデータ) (2023-11-06T09:56:33Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
本稿では,コンパクトなニューラルポリシーの解釈可能性について,不整合表現レンズを用いて検討する。
決定木を利用して,ロボット学習における絡み合いの要因を抽出する。
学習したニューラルダイナミクスの絡み合いを計測する解釈可能性指標を導入する。
論文 参考訳(メタデータ) (2022-10-13T01:10:41Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
オフライン強化学習アルゴリズムを用いて動的メカニズムを設計する。
我々のアルゴリズムは悲観主義の原理に基づいており、オフラインデータセットのカバレッジについて軽度な仮定しか必要としない。
論文 参考訳(メタデータ) (2022-05-05T05:44:26Z) - An Interactive Explanatory AI System for Industrial Quality Control [0.8889304968879161]
我々は,ループ間対話型アプローチに向けて,欠陥検出タスクを拡張することを目的としている。
本稿では,産業品質管理環境における分類のための対話型支援システムを提案する。
論文 参考訳(メタデータ) (2022-03-17T09:04:46Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
民主化された学習(Dem-AI)は、大規模な分散および民主化された機械学習システムを構築するための基本原則を備えた全体主義的哲学を定めている。
本稿では,Dem-AI哲学にヒントを得た分散学習手法を提案する。
提案アルゴリズムは,従来のFLアルゴリズムと比較して,エージェントにおける学習モデルの一般化性能が向上することを示す。
論文 参考訳(メタデータ) (2020-07-07T08:34:48Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
民主化学習(Dem-AI)という新しいデザイン哲学を提案する。
ヒトの社会的グループに触発され、提案されたDem-AIシステムの学習エージェントの専門グループは階層構造で自己組織化され、より効率的に学習タスクを遂行する。
本稿では,様々な学際分野に触発された未来のDem-AIシステムを実現するためのガイドラインとして,参照設計を提案する。
論文 参考訳(メタデータ) (2020-03-18T08:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。